Htwish in Preproduction

John Freeman, 7/28/03

Talk Outline

- A brief description of Htwish
- How we use Htwish
- Recent improvements to the program
- Ongoing and future improvements: discussion encouraged!

What is Htwish?

- Originally written by Igor Volobouev for testing Svx3 chips/hybrids
- Runs tests on chips/hybrids, storing their output in database files – "Htest" mode
- Analyzes the data in these files, both producing histograms and pass / failing the hybrid by cutting on the data

Htest Mode

- Htwish, as of now, can run 16 tests.
 Some are used only for the histograms they produce, others are involved in official hybrid evaluation
- Running the full set of tests takes ~ 11.5 minutes – this will need to be reduced!

Hybrid evaluation

- Pass/Fail mechanism works in a hierarchical manner: hybrids evaluated in terms of chips, chips from cells and channels, etc.
- Each component is evaluated in terms of (A) its subcomponents, and (B) its own relevant set of tests

Hybrid evaluation (cont'd)

 Some tests are themselves Pass/Fail (the pipeline cell ID check, e.g.).
 Others involve cutting on the measured data: the gain in the chip's pipeline capacitors, for example

Htwish You Were Here

- In May, William Wester at FNAL used Htwish to produce data for 2 wafers of new Svx4's
- Here at LBL, we've used Htwish to analyze this data, along with our own chips
- In August and September, Htwish will be used during hybrid irradiation

Coming up...

- Htwish will be used at all stages of Svx4 testing: wafers at FNAL, hybrids at LBL, burn-in at Davis, and final approval at FNAL
- Htwish must accommodate all labs: must be transparent to the DAQ hardware, be able to produce flat-ascii format data, etc.

A kinder, gentler Htwish

- Htwish is being improved:
 - Easier to install (less path references, better Makefile, etc.)
 - Easier to run (convenient script passes parameters to Htwish)
 - Easier to change tests used during evaluation
 - Initialization stream data to be recorded

On a helpful Note...

- Htwish manual should ease the learning curve
- Covers many subjects: installation, addition / removal of tests (both in Htest and evaluation mode), code overview, troubleshooting, etc.
- About 8000 words / 20 pages, it will soon be published as a CDF note

Htwish at FNAL

- Htwish will be used extensively on the PTA/PMC system
- Tom Junk had to recode his Htwish due to the system's different readback scheme
- We've agreed Htwish should have a standard code => recompilation should be all that's necessary

Svx4Gui: Satyajit's ROOT analysis tool

- Satyajit Behari has written a set of ROOT CINT-usable classes designed to histogram hybrid data; they are also in his standalone Svx4Gui program
- These classes handle data in flat ascii format
- Consequently, Htwish can now output data in this format

Svx4Gui cont'd

- Open question: how much Htwish data should be written to ascii (space is an issue!) ?
- Less space-consuming, but lesspowerful: have Htwish output summary files for LBL-coded ROOT macros
- We wish to plot pipeline pedestal noise and gain, as well as preamp risetimes

Benchmarking issues

- Longer term issues remain: e.g., how long should it have to take to test a chip or hybrid?
- Currently, the breakdown of test times on our systems is as follows...

Current test-time breakdown: total time = 656 s

Potential test-time breakdown: total time = 286 s

Analysis issues

- Also an open question: what should be our component / data cuts during analysis?
- Let's examine different sets of cuts on a sample of 100 chips from William's data...

of bad components permitted

CUT SEVERITY	Channels in chip	Cells in chip	Caps in chip	Caps in channel	Caps in cell
Not Strict	2	1	20	2	4
Strict	1	0	10	1	2

Note: 46 caps/channel, 128 caps/cell, 46 x 128 = 5888 caps/chip

The Data Cuts

_

CUT SEVERITY	Pedestal Median, Residual, Max Noise	Gain Median, Residual, Max Noise	Fast preamp, risetime	Medium preamp, risetime	Slow preamp, risetime
Not Strict	(50,150), (-5,5), 8	(80,130), (-20,20), 8	(0,1.7)	(0.2, 2)	(0.2,3)
Strict	(70,100), (-4,4), 8	(-85,120), (-18,18), 8	(0.1,1.2)	(0.2, 1.5)	(0.2 ,2.2)

The Results

COMPONENT CUT SEVERITY	DATA CUT SEVERITY	PASS # / FAIL #
Not Strict	Not Strict	61 / 39
Not Strict	Strict	55 / 45
Strict	Not Strict	51 / 49
Strict	Strict	40 / 60

The Results, cont'd

Q: How many of the chips had all 5888 pipeline capacitors pass the gain and pedestal noise and residual tests?

A: With the "not strict" data cuts, 43 out of 100. With the "strict" data cuts, 35 out of 100.