
Htwish in Preproduction

John Freeman, 7/28/03

Talk Outline

� A brief description of Htwish
� How we use Htwish
� Recent improvements to the program
� Ongoing and future improvements:

discussion encouraged!

What is Htwish?
� Originally written by Igor Volobouev for

testing Svx3 chips/hybrids
� Runs tests on chips/hybrids, storing

their output in database files – “Htest”
mode

� Analyzes the data in these files, both
producing histograms and pass / failing
the hybrid by cutting on the data

Htest Mode

� Htwish, as of now, can run 16 tests.
Some are used only for the histograms
they produce, others are involved in
official hybrid evaluation

� Running the full set of tests takes ~
11.5 minutes – this will need to be
reduced!

Hybrid evaluation

� Pass/Fail mechanism works in a
hierarchical manner: hybrids evaluated
in terms of chips, chips from cells and
channels, etc.

� Each component is evaluated in terms
of (A) its subcomponents, and (B) its
own relevant set of tests

Hybrid evaluation (cont’d)

� Some tests are themselves Pass/Fail
(the pipeline cell ID check, e.g.) .
Others involve cutting on the measured
data: the gain in the chip’s pipeline
capacitors, for example

Htwish You Were Here
� In May, William Wester at FNAL used

Htwish to produce data for 2 wafers of
new Svx4’s

� Here at LBL, we’ve used Htwish to
analyze this data, along with our own
chips

� In August and September, Htwish will
be used during hybrid irradiation

Coming up…

� Htwish will be used at all stages of Svx4
testing: wafers at FNAL, hybrids at LBL,
burn-in at Davis, and final approval at
FNAL

� Htwish must accommodate all labs:
must be transparent to the DAQ
hardware, be able to produce flat-ascii
format data, etc.

A kinder, gentler Htwish

� Htwish is being improved:
� Easier to install (less path references,

better Makefile, etc.)
� Easier to run (convenient script passes

parameters to Htwish)
� Easier to change tests used during

evaluation
� Initialization stream data to be recorded

On a helpful Note…
� Htwish manual should ease the learning

curve
� Covers many subjects: installation,

addition / removal of tests (both in
Htest and evaluation mode), code
overview, troubleshooting, etc.

� About 8000 words / 20 pages, it will
soon be published as a CDF note

Htwish at FNAL
� Htwish will be used extensively on the

PTA/PMC system
� Tom Junk had to recode his Htwish due

to the system’s different readback
scheme

� We’ve agreed Htwish should have a
standard code => recompilation should
be all that’s necessary

Svx4Gui: Satyajit’s ROOT
analysis tool
� Satyajit Behari has written a set of

ROOT CINT-usable classes designed to
histogram hybrid data; they are also in
his standalone Svx4Gui program

� These classes handle data in flat ascii
format

� Consequently, Htwish can now output
data in this format

Svx4Gui cont’d
� Open question: how much Htwish data

should be written to ascii (space is an
issue!) ?

� Less space-consuming, but less-
powerful: have Htwish output summary
files for LBL-coded ROOT macros

� We wish to plot pipeline pedestal noise
and gain, as well as preamp risetimes

Benchmarking issues

� Longer term issues remain: e.g., how
long should it have to take to test a
chip or hybrid?

� Currently, the breakdown of test times
on our systems is as follows…

Current test-time breakdown: total time = 656 s

Potential test-time breakdown: total time = 286 s

Analysis issues

� Also an open question: what should be
our component / data cuts during
analysis?

� Let’s examine different sets of cuts on a
sample of 100 chips from William’s
data…

The Component Cuts

211001Strict

422012Not Strict

Caps in cellCaps in
channel

Caps in chipCells in chipChannels in
chip

CUT
SEVERITY

Note: 46 caps/channel, 128 caps/cell, 46 x 128 = 5888 caps/chip

of bad components permitted

The Data Cuts

(0.2
,2.2)

(0.2,
1.5)

(0.1,1.2)(-85,120),
(-18,18),
8

(70,100),
(-4,4),
8

Strict

(0.2,3)(0.2,
2)

(0,1.7)(80,130),
(-20,20),
8

(50,150),
(-5,5),
8

Not Strict

Slow
preamp,
risetime

Medium
preamp,
risetime

Fast preamp,
risetime

Gain Median,
Residual,
Max Noise

Pedestal Median,
Residual, Max
Noise

CUT
SEVERITY

The Results

40 / 60StrictStrict

51 / 49Not StrictStrict

55 / 45StrictNot Strict

61 / 39Not StrictNot Strict

PASS # /
FAIL #

DATA CUT
SEVERITY

COMPONENT CUT
SEVERITY

The Results, cont’d

Q: How many of the chips had all 5888
pipeline capacitors pass the gain and
pedestal noise and residual tests?

A: With the “not strict” data cuts, 43
out of 100.
With the “strict” data cuts, 35 out of
100.

