Experimental status of Supersymmetry

Maxwell Chertok Univ. of California, Davis PIC XXI, Seoul June 28, 2001

Overview

- Introduction
- SUSY in a nutshell
- Experimental searches
 - LSP, Charginos and Neutralinos
 - Sgoldstinos
 - Gluinos, Squarks (incl. Stop)
 - Sleptons and gravitinos
 - R-parity violating SUSY
 - SUSY Higgs
- Prospects and conclusions

Introduction

June 28, 2001

I present some recent results from:

- I won't discuss the theory in much detail!
- NB! I will not discuss detectors—see following talks! (they are all following...)

SUSY on two slides

- SUSY symmetrizes SM fermion and boson particle content: just add tildes (mostly)
- SUSY is broken (no light selectron) but we don't know how.
- MSSM—parameterize ignorance of SUSY breaking with many "soft" terms
 - LSP is N1
 - Signature is *nI+mj+MET*

mSUGRA—breaking transmitted to visible particles by grav. interactions. Only 4.5 parameters:

 m_0 Common scalar mass $m_{1/2}$ Common gaugino mass $sign(\mathbf{m})$ Higgs mass parameter $\tan \mathbf{b}$ Ratio of Higgs VEVs A_0 Trilinear coupling LSP can be N1 or sneutrino Signature as in MSSM, stop can be light

SUSY, 2nd slide

GMSB—gravitino (LSP) mass related to SUSY breaking scale. Relevant mass range: $O(10^{-2} < M(\tilde{G}) < 10^4)$ eV

 Phenom. depends on NLSP, e.g.:

$$N1 \rightarrow \boldsymbol{g}\tilde{G}, \ \tilde{l} \rightarrow l\tilde{G}$$

 NLSP lifetime can be appreciable. AMSB—Super Weyl anomaly generates gaugino and scalar masses.

- *C1, N1* near mass degenerate.
- RPV—L and/or B number violating couplings non-zero:
 - Sparticles can be singly produced and the LSP is unstable.
 - Signature: more leptons, less MET

LSP, Charginos and Neutralinos

Cosmology: LSP is neutral, colorless, weakly interacting (e.g. č₁⁰ ≡ N₁)
LEP1 : √s = M(Z⁰) look at Γ_{invis} M(N₁) > 25 GeV, for tan b > 2
LEP2 : √s ≤ 208 GeV

 ALEPH: assume gaugino mass unification and look for

 $e^+e^- \rightarrow C_1C_1, N_iN_j \rightarrow nl + mj + MET$

Limits on Neutralino LSP

Similar results from D, L and O!

LEP-SUSY WG Chargino results

- Assume gaugino unification $M_1 = (5/3) \cdot M_2 \tan^2 \boldsymbol{q}_W$
- Chargino pair production, decay via W* to leptons, leptons+jets, jets
- Efficiencies, backgrounds, and candidates summed over A,D,L and O : all in agreement
- Compute CL for No Excess (CL for obtaining a less background-like result than observed)
- Compute CL for No Deficit (CL for obtaining a more background-like result than observed)

LEP-SUSY Chargino results (iii)

Chargino results in CMSSM

- MSSM: 105 (or is it 124?) new parameters!Too much to scan. Add some boundaries
- LEP2 (often) employs Constrained MSSM:
 - 1. m_0 SU(2) gaugino mass param. at EW scale
 - 2. M_{2} VEV Common scalar mass at Planck scale
 - 3. $tan^{2}b$ ratio of two Higgs doublets
 - 4. **M** Higgsino mass parameter
 - 5. A_0 Common trilinear coupling
 - 6. \mathcal{M}_{A}° Pseudoscalar Higgs mass at EW scale
- Note similarity to mSUGRA:

 $m_{1/2} \leftrightarrow M_2, sign(\mathbf{m}) \leftrightarrow \mathbf{m}, \otimes \leftrightarrow m_A$

Typical scan: $0 \le M_2 \le 2000, |\mathbf{m}| \le 500, m_0 \le 500, A_0 = \pm M_2, \pm m_0, 0$

Chargino results in CMSSM (ii)

Near mass-degenerate C1, N1

- $m_p \le \Delta m \equiv m_{C1} m_{N1} \le 5 \text{ GeV}$ ■ Occurs in MSSM: 1) for large M_1, M_2 (higgsino); 2) in gaugino region if M_1-M_2 unification relaxed; 3) in AMSB since $M_1/M_2>>1$
- Small Δm implies long decay length for C1. Examine 0 cm < l < 80 cm
- Little hadronic activity, lots of MET
 - Require isolated ISR photon for tag (cuts **gg** bg)

Near mass-degenerate C1 (iii)

Search for Sgoldstino

- Spontaneous breaking of global SUSY implies the existence of massless fermions: goldstinos. "Spartner" is sgoldstino (f).
- Light *f* unstable theoretically, motivates search for M(*f*) ~ O(100 GeV)
- Production: gg fusion
 - Assume all other SUSY particles heavy. Then $\boldsymbol{s}(p\overline{p} \rightarrow \boldsymbol{f})$ depends only on $M(\boldsymbol{f}), \sqrt{F}$
- Decay: gg, gg, WW, ZZ, ff Diphoton good choice for clean signal (Br~1-2%).
 - $Br(H_{SM} \rightarrow gg) \sim 1\%$; larger for bosophilic Higgs

Search for Sgoldstino (ii)

Gluino LSP

- In some SUSY models, the gluino can be light and stable.
 - Forms R-hadrons that trundle through detector.
- Standard MET+jets: loses MET !
- DELPHI searches:
 - 1. LEP1: $e^+e^- \rightarrow \tilde{g}\tilde{g}q\bar{q}$ Exclude: 2-18 GeV
 - 2. LEP2: $\tilde{q} \to R$ decays. Look in: $\begin{cases}
 e^+e^- \to q\bar{q}g \to q\bar{q}g\tilde{g} & 2 \text{ jets+2 gluino jets} \\
 e^+e^- \to \tilde{t}_1\bar{\tilde{t}}_1 \to c\tilde{g}\bar{c}\tilde{g} & \tilde{g} \to R^0, R^{\pm}
 \end{cases}$

Gluino search in like-sign top

- CDF's scenario:
 - $p\overline{p} \rightarrow \tilde{g}\tilde{g},$

$$\tilde{g} \rightarrow t \tilde{t}^{(*)},$$

- $t \rightarrow bW \rightarrow blv$
- Top-dilepton with LSAssume:

$$Br(\tilde{t} \rightarrow c \, \tilde{c}_1^0) = 100\%$$

Gluino search in like-sign top (ii)

Search for squarks and gluinos

- At Tevatron, $p\overline{p} \rightarrow \tilde{g}\tilde{g}, \tilde{g}\tilde{q}, \tilde{q}\tilde{\tilde{q}}$ typically dominate.
- Classic search is for MET+jets from hadronic decays in RPC scenario. CDF Requires (in the box):
 - − E_t(j_{1,2,3})>(70,30,15) GeV
 - MET>70 GeV
 - No isolated tracks
 - $E_t(j_2)+E_t(j_3)+MET>150 \text{ GeV}$
- BG: QCD,Z+jets,W+jets,tt
- Perform analysis "blind"

Other boxes available for cross checks

Search for squarks and gluinos (ii)

Search for squarks and gluinos (iii)

Search for Top squark

Heavy top, mixing -> stop can be light Dzero performs search: $p\overline{p} \rightarrow \tilde{t}_1 \overline{\tilde{t}_1}, \ \tilde{t}_1 \rightarrow b l \tilde{n}, \ \{l = e, m \ 33\% \ ea\}$ **Require** e + m + MET (15,15,15) GeV, acoplanar **BG:** Fakes, $Z^0 \rightarrow tt$, $t\overline{t}$, WW, WZ^0 BG: 13.4±1.5 expected, 11 observed Set limits in stop-sneutrino mass plane

Search for Top squark (ii)

Why so much better than CDF?

- Didn't use b-tag!
- Instead, required e+µ to reduce SM backgrounds
- Lower MET cut

Dzero excludes:

- 1. (140,43) GeV
- 2. (130,85) GeV

Search for Top squark (iii)

• $\tilde{t}_1 \rightarrow c \, \tilde{c}_1^0$ channel:

June 28, 2001

Slepton Searches

•Simplest case: smuon NLSP

•mSUGRA inspired models: $m(\tilde{m}_L) > m(\tilde{m}_R)$ and mixing is negligible

•Production: $e^+e^- \xrightarrow{s-chan} \tilde{m}_R^+ \tilde{m}_R^-$ •Decay: $\tilde{m}_R \to m\tilde{c}_1^0$ • \therefore Search for acoplanar muon pairs

•Stau NLSP

•Mixing can contribute (at large tan beta)

•Selectrons: t-channel neutralino exchange enhances s

Channel	Neutralino Mass	Observed Slepton Mass Lower Limit	Expected Slepton Mass Lower Limit
Calastera	0 GeV	100.5 GeV	99.1 GeV
Selectron	40 GeV	99.4 GeV	99.3 GeV
Smuon	0 GeV	95.4 GeV	91.0 GeV
	40 GeV	96.4 GeV	91.7 GeV
Stau	0 GeV	80.0 GeV	85.1 GeV
	40 GeV	87.1 GeV	89.3 GeV

Sleptons in GMSB (long-lived)

Delphi considers slepton NLSP

- 1. Stau, with $\boldsymbol{t}_1 \rightarrow \boldsymbol{t}\tilde{G}$
- 2. Slepton co-NLSP, with $\tilde{l}_R \rightarrow l\tilde{G}$

Avg. decay length ~ $\sqrt{(E_{\tilde{l}} / m_{\tilde{l}})^2 - 1} \cdot m_{\tilde{G}}^2 / m_{\tilde{l}}^5$

Grav. Mass (eV)	Search method	#exp/#obs	
<1	IP	3.3/4	
1-10	IP	2.4/2	
10-1000	Kinked tracks	0.94/2	
>1000	Large dE/dx	0.25/0	

Sleptons in GMSB (ii)

Sleptons in GMSB (iii)

• OPAL performs related searches $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow (\tilde{\ell}\ell)(\tilde{\ell}'\ell') \rightarrow (\ell\ell\tilde{G})(\ell'\ell'\tilde{G})$

HERA R-parity violation searches

At HERA, resonant squark production via λ ' coupling: $e^+p \Rightarrow \tilde{q}$

Cross section small as proton antiquark must participate

Decays to:

$$e^+ + \bar{u}^j$$
 or $\bar{\nu}_e + \bar{d}^j$

λ'_{1jk}	production process					
111	$e^+ + \bar{u} \to \overline{\tilde{d}_R}$	$e^+ + d \to \tilde{u}_L$				
112	$e^+ + \bar{u} \to \overline{\tilde{s}_R}$	$e^+ + s \to \tilde{u}_L$				
113	$e^+ + \bar{u} \to \overline{\tilde{b}_R}$	$e^+ + b \rightarrow \tilde{u}_L$				
121	$e^+ + \bar{c} \to \overline{\tilde{d}_R}$	$e^+ + d \to \tilde{c}_L$				
122	$e^+ + \bar{c} \to \overline{\tilde{s}_R}$	$e^+ + s \to \tilde{c}_L$				
123	$e^+ + \bar{c} \to \overline{\tilde{b}_R}$	$e^+ + b \rightarrow \tilde{c}_L$				
131	$e^+ + \bar{t} \to \overline{\tilde{d}_R}$	$e^+ + d \to \tilde{t}_L$				
132	$e^+ + \bar{t} \to \overline{\tilde{s}_R}$	$e^+ + s \to \tilde{t}_L$				
133	$e^+ + \bar{t} \to \overline{\tilde{b}_R}$	$e^+ + b \rightarrow \tilde{t}_L$				

Cross section scales as

$$I_{1j1}^{'^2} \cdot d(x),$$
$$x = M_{\tilde{q}}^2 / s$$

Decays to: $e^+ + d^k$

HERA RPV searches (ii)

Search assumptions:

- Only one RPV coupling dominates
- Squarks undergo RPV and RPC decays
- -LSP can be \tilde{c}_{1}^{0} , \tilde{c}_{1}^{\pm} , or \tilde{g} which decays $LSP \Rightarrow q\overline{q}'l$
- Sparticle lifetimes neglected

34

RPV searches at H1 (ii)

Channel	Selection Cuts	N_{obs}	N_{exp}			
DIS-like channels: $Q^2 > 2500 \text{ GeV}^2$, $y < 0.9$						
LQe	$\begin{array}{l} E_{T,e} > 15 \; \mathrm{GeV} \\ P_{T,miss}/\sqrt{E_{T,e}} \leq 4\sqrt{\;\mathrm{GeV}} \\ 40 \leq \sum \left(E-P_z\right) \leq 70 \; \mathrm{GeV} \\ \mathrm{optimised\; lower\;} y\text{-cut} \end{array}$	$ > 15 \text{ GeV} \\ \overline{/E_{T,e}} \le 4\sqrt{\text{ GeV}} \\ \overline{Z} - P_z \ge 70 \text{ GeV} \\ \text{sed lower } y \text{-cut} $				
$LQ\nu$	$P_{T,miss} > 30~{\rm GeV}$ no electron $E_{T,e} > 5~{\rm GeV}$	30-80 %	213	199 ± 12		
e-preselec	channels with: e - tion: $E_{T,e} > 5$ GeV; ≥ 2 jets: $E_{T,e}$	+ multijets + 1 _{jet 1,2} > 15, 10	X GeV; h	igh y_e ; angular cuts		
eMJ	$P_{T,miss} < 20 \text{ GeV}$ $40 \le \sum (E - P_z) \le 70 \text{ GeV}$	35–50 %	159	151 ± 17		
e^{-MJ}	<i>eMJ</i> criteria + "wrong" charge of <i>e</i>	$\approx 30\%$	0	1.3 ± 0.5		
ee MJ	second e with: $E_{T,e2} > 5 \text{ GeV}$ $5^{\circ} < \theta_{e2} < 110^{\circ}$	$\approx 30\%$	0	0.7 ± 0.4		
eμMJ	$\begin{array}{l} P_{T,\mu} > 5 \mathrm{GeV} \\ 10^{\circ} < \theta_{\mu} < 110^{\circ} \end{array}$	35–50%	2	4.2 ± 1.2		
veMJ	$P_{T,miss} > 15~{ m GeV}$ $y_e(y_e-y_\hbar) > 0.05$	$\approx 30\%$	1	3.2 ± 1.2		
channels with: ν + multijets + X ν -preselection: $P_{T_{min}} > 25$ GeV: > 2 jets: $E_{T_{min}} > 15, 10$ GeV						
νMJ	$E_{T,jet2} > 15 \text{ GeV}$ $\sum (E - P_z)_h < 55 \text{ GeV}$	20-60 %	21	23 ± 4		
νµMJ	$\begin{array}{l} P_{T,\mu} > 5 ~ \mathrm{GeV} \\ 10^{\circ} < \theta_{\mu} < 110^{\circ} \end{array}$	$\approx 40\%$	0	0.5 ± 0.2		

No excesses. Proceed to set limits:

More RPV limits from H1

More RPV limits from H1 (ii)

L3 limit is independent of magnitude of RPV coupling

large tan **b** dependence

RPV searches at **ZEUS**

Assumptions for this scenario:

- At most one lambda' coupling non-zero
- LSP is N1, gluino heavier than squark
- Set $M_1 = (5/3) \cdot M_2 \tan^2 \boldsymbol{q}_W$
- $-M_0=0$, trilinear couplings=0
- All 1st gen. sfermions assumed mass degenerate

Search for $I'_{1j1} > 0$ with 1994-1997 e⁺p data: 48 pb⁻¹

RPV searches at ZEUS (ii)

Analysis classes

class	$\operatorname{circularity}$	signal	backgrounds	variables
	cut	topologies		
ν	$c>10^{-3}$	u q q ar q, u q q ar q q ar q	CC-DIS, γp	M, ℓ_c, y
e^+ low- c	$c<10^{-3}$	e^+q	NC-DIS, γp	M, y
e^+ high- c	$c>10^{-3}$	$e^{\pm}qq\bar{q}, e^{\pm}qq\bar{q}q\bar{q}$	NC-DIS, γp	M, ℓ_c, y
e^-	$c>10^{-3}$	$e^- q q \bar{q}, e^- q q \bar{q} q \bar{q}$	NC-DIS, γp	M, ℓ_c, y

•M = reconstructed mass for event

•*lc*=log(circularity)

•*y*~*E*-*Pz* transfer from e+ to

hadronic final state

Dramat	ic backgro	und reje	ection with	final cuts	!		
	pr	eselect	ion	aft	$\operatorname{er}(\overline{R})$ cu	ıt	Opt for each:
class	\mathcal{A}_C	B_C	N_C^{presel}	$\mathcal{A}_C^{ ext{final}}$	B_C^{final}	N_C^{obs}	$m_{\tilde{q}} = 220 \ GeV,$
ν	12.8%	137	162	10.2%	0.9	3	$m = -180 \ GeV,$
e^+ low- c	0.2%	88	66	0.0%	0.0	0	$M_2 = 100 \; GeV,$
e^+ high- c	14.0%	441	439	9.0%	0.5	2	$\tan \boldsymbol{b} = 2$
e^-	6.2%	0.08	0	6.0%	0.01	0	
	Acc	#bg	#obs	Acc	#bg	#obs	1

RPV searches at ZEUS (iii)

RPV searches at ZEUS (iv)

M(squark)=220 GeV

R-parity violation search at DZero

Search for non-zero I_{2jk} , (j = 1, 2; k = 1 - 3)

- -LSP decays $\tilde{c}_1^0 \Rightarrow mqq'$
- Require 2 m(15,10) + 4 j (15), $H_t > 150$, aplanarity cuts
- Complementary to ee+jets search
- -0.18 events expected, 0 observed
- Set limits in mSUGRA framework:

 $\tan \mathbf{b} = 2, A_0 = 0, \mathbf{m} < 0, scan : (m_0, m_{1/2})$

RPV search at Dzero (ii)

tan **b** dependence: gauginos become light-> soft muons+jets (m > 0 would reduce limits: LSP photino content diminished)

Dzero RPV Slepton search

 Look for smuons and sneutrinos from •non-zero I_{211} resonant production

cross-section (pb)

Dzero RPV Slepton search (ii)

- Signature is 2 muons + 2 jets.
- Backgrounds:
 - top, WW+jets, Z+2jets
 - Drell-Yan, W+jets negligible
- Perform NN analysis. Variables:
 - Et(j), Pt(μ), M($\mu\mu$), ΔR , sphericity, aplanarity
- **Reference point:** $m_0 = 200, M_2 = 200, \tan b = 2, m < 0$
 - Result: 6.4 signal evt, 1 bg evt, 2 observed

looks exactly the same with smuon mass on x-axis

m,

R-parity violation search at CDF

Idea: test 3rd gen. RPV coupling: $p\overline{p} \rightarrow \tilde{t}_1 \overline{\tilde{t}_1}, \ \tilde{t}_1 \Rightarrow bt$ $\rightarrow (bln_l \overline{n}_t)(bt_h)$

- Final state "looks like" LQ3 analysis. Improvements:
 - 1. Lower P_T electron cut, $P_T > 10 \ GeV$
- 2. Track-based \boldsymbol{t}_h id, include \boldsymbol{p}^0 reconstr.

Significantly improves acceptance for $Z^0 \rightarrow tt$

RPV search at CDF (ii)

• After baseline selection, remaining BG: $Z^0 \rightarrow tt, W + jets, QCD$

- Final cuts require: $M_T(e, \mathbb{E}_T) \le 35 \ GeV,$ $E_T(e) + E_T + P_T(t_h) \ge 75 \ GeV,$ $N_j \ge 2$ - Result: $M_T(e, \mathbb{E}_T) \le 35 \ GeV,$ $M_T(e, \mathbb{E}_T) \le 35 \ GeV,$ $M_T(e, \mathbb{E$

- 1.9 expected
- 0 observed

Also have cross section limits for $t \to m \bar{n}$

SUSY Higgs

■ LEP2 (WG) looked ■ at $e^+e^- \rightarrow h^0 A^0$ $\rightarrow (b\overline{b})(b\overline{b},tt)$

Constrained model: M_{SUSY}, M₂, m, A, tan b, m_A, m_{g̃}
 L3 results, e.g.:

decay	background	$ signal m_h = m_A = 90 GeV $	observed
$A^0 \rightarrow b\overline{b}$	7.8	3.2	12
$A^0 \rightarrow tt$	3.2	0.4	2

SUSY Higgs (ii)

June 28, 2001

- Examine 3 scenarios:
 - 1. no mixing (top squarks)
 - 2. m_h -max: gives heaviest *h*, (conservative)
 - 3. large m = 1 TeV (alt. decays of higgs)

Prospects and conclusions

 I didn't have time to cover it all! Vast field at present and foreseeable future
 – LEP2 final results soon: RPV, GMSB

- Tevatron Run II underway. Major detector and machine upgrades. First physics results early in 2002. CDF-D0 WGs!
- H1 and Zeus will take <u>much</u> more data*, polarized lepton beam, etc.

LOOKING FORWARD TO IT!

See following talks for details.