
CDF/DOC/COMP UPG/CDFR/5294
Version 3.15.0
April 25, 2001

Getting Started with CDF Run 2 O�ine

Ken Bloom
University of Michigan

Abstract

We describe parts of the Run 2 o�ine system for new users. After reading this note, a user

should be able to run an AC++ program, write their own module and include it in an executable,

and access some analysis-level data. The instructions are by no means comprehensive, but are

complete enough for an average user to start working with the data. This note will be updated

as the o�ine system evolves.

1 Preliminaries

The Run 2 o�ine system is now available on a large number of CDF computers. At Fermilab,
you might want to use fcdfsgi2, the new Run 2 analysis machine. You may also have the o�ine
system on a computer at your home institution, or in your trailer oÆce.

The very �rst thing you must do is source �cdfsoft/cdf2.cshrc, to de�ne UPS commands
such as setup, which is used to de�ne environment variables and paths for various software packages.
You might want to keep this source statement in your .cshrc �le, so you never have to think about
it.

Then, various environment and path variables are de�ned with the command setup cdfsoft2.
(Some of these variables may conict with those needed for other software development e�orts;
only do this in sessions where you are doing CDF code development, and don't put it in any login
scripts.) With just those two words, you are set up to use the current production release of the
o�ine software, version 3.15.0 as of this writing. You should use a production release unless you
think that you need to be on the absolute cutting edge { the frozen has been \extensively" validated,
and is guaranteed to link, run, and give \reasonable" results.

If you prefer a di�erent release, include the version name in your setup command, e.g. setup

cdfsoft2 development. The development release is the most up-to-date version of the code; it
is not guaranteed to link or run or do anything sensible. You should only use development if you
think you need the absolutely most recent version of the software; it is by its nature very unstable.
On fcdfsgi2 and some other Fermilab computers, including the online machines, a release called
\rawhide" is maintained; it is a copy of the development release from the day that it most recently
linked. It is guaranteed to link, but won't necessarily run in any sensible way. The rawhide release
is only marginally more stable than development; it too can change from day to day. Most users
do not need this release. If you are a beginner, stick with a production release, even if someone
tells you otherwise.

What if you want to have the stability of a frozen release, but you want to use code that is more
recent than the current production release, i.e. 3.15.0? Your best option is the latest integration
release. This is a frozen release that is created every week, with code that is approved by the

1

librarians for each package. You can setup for the latest integration release with the command
setup -t cdfsoft2 on fcdfsgi2.

A useful environment variable that is declared when you setup cdfsoft2 is CDFSOFT2 DIR,
which is e�ectively the top-level directory of the release. In this directory you will �nd subdirecto-
ries for all the packages (about 230 at last count) that are in the release, and under each package
name you will �nd the source code. Each package contains code for some particular task. One
subdirectory is $CDFSOFT2 DIR/bin/<OpSys>-<CompVer>, which contains some precompiled exe-
cutables for your use. Here, <OpSys> is set to the name and version of your computer's operating
system, and <CompVer> is the name and version of the compiler, which will vary from platform to
platform; on fcdfsgi2, for instance, <OpSys>-<CompVer> will be IRIX6-KCC 4 0. This subdirec-
tory gets added to your Unix path, so you will be able to run these executables just by typing their
names (without the directory name in front) on your Unix command line.

One very useful tool is the Web-based code browser which can be accessed from the CDF o�ine
Web page. By default you get the development version of the code, but there are links at the top
of the page to frozen releases. What you see is essentially the directory structure in CDFSOFT2 DIR,
but from there on down everything is extensively cross-referenced, so you can easily hop from a
routine name in one �le to the source code for that routine. There are also search functions; the
\free text" search is most likely to get you to where you want to go, but is all-inclusive and will
give plenty of links that you don't want.

As you navigate through the directories of source code, you will �nd that a given package has
two subdirectories of greatest importance. The �rst of these has the same name as the package
itself. This is where you will typically �nd the \header" �les for the classes in that package, with
the suÆx .hh. These �les are where classes are declared, with their methods and data members.
The other important subdirectory has the name src, and this is where the corresponding source
code �les, with the suÆx .cc, reside. The roles of these �les will be described further in later
sections.

2 AC++ Concepts

2.1 The Structure of AC++

AC++ is the uniform framework that is used throughout CDF to process and analyze our data �les.
This is ultimately a complicated task, involving �le management through the operating system,
and the conversion of sequences of bits in those �les into variables and data structures that have
physics information. AC++ is meant to take care of all of these low-level tasks for you, so you can
concentrate on physics. AC++ is a family of classes (routines, if you prefer the Fortran nomenclature)
which have space set aside for code that you write yourself for data analysis. Thus, you may create
as many AC++ executables as you desire, each with a di�erent piece of user-written code.

Just like the old Analysis Control from Run 1, AC++ thinks in terms of modules, paths, and
streams. The user is allowed to con�gure all of these elements at run time, which provides a lot of
exibility and power, along with all the advantages and disadvantages that that implies.

When you start an AC++ program, you are given a command prompt: AC++>. This is where
you enter all the commands described below. Commands are interpreted with the TCL interpreter,
and thus any TCL commands should be valid, should you happen to know any TCL commands. If
you don't feel like typing the same commands every time you run your program, you can put them
all in a �le, and just give the �le name on your Unix command line: myProgram myCommands.tcl,
where myProgram is the executable name and myCommands.tcl is the �le with the commands. This
�le can also be read in from the AC++ prompt: source myCommands.tcl. Note that abbreviated

2

commands are not allowed, but AC++ supports tab completion for many commands, module names,
and �le names.

An AC++ module is a chunk of code that is used to analyze events. Typically, a single module
will carry out a single well-de�ned task, such as event reconstruction in a particular subdetector.
Each AC++ program can have an arbitrary number of modules of your choice linked into it, and you
choose at run time which of them you want to use. The AC++ command show module will tell you
which modules are available in the executable that you are running. Each module typically comes
with a \begin job" routine that is executed when you start processing data, an \event" routine that
is called on every data event, and an \end job" routine that is called when you are done processing
data. The \event" routine gets to look at something called the \event record," which comes from
your input �le and holds, in some fashion, all the data for a particular event. What the event
record really is is discussed later in this note. Any module can write new data to the event record
(but can't modify data that are already there!), so another module that is downstream can look
at the output of the earlier module. The rule is that modules are only supposed to communicate
with each other by writing to and reading from the event record, so structures like common blocks
are not (supposed to be) allowed. It is possible to de�ne a module as a \�lter." If the �ltering is
enabled, this module will decide which of the input data events will be written to the output �le.

Modules can have parameters that you can set at run time. This is done using a \talk-to."
You can invoke the talk-to of a module with the command talk ThisModule, where of course
ThisModule is the name of the module. This will bring you to a menu of commands for that
module, and at this point it is helpful to type help or show to see what commands are available.
Some commands will give you a submenu with more commands. Parameters are usually set with
a command that has the syntax ParameterName set newValue. If you have set the new value
successfully, AC++ typically just responds with a blank line. If you gave an invalid command, you
will get an error message that might be informative. The most common mistake is to give the
newValue in the wrong format. AC++ is picky about talk-to parameters having the right type, i.e.
integer, oating point, or boolean.

More commands to control modules can be found with the command module help. A module
can be completely disabled with module disable ThisModule. Modules can also be \cloned" with
module clone ThisModule NewModule. If you want to run a particular module twice with two
di�erent sets of parameters (the cone size for jet clustering is a standard example), you can make a
clone of the module at run time, with a new name, and then specify di�erent parameters (via the
talk-to) for the two copies.

There are two special kinds of modules that have particularly important talk-tos: the input and
output modules. The former is responsible for opening the event �le that you wish to read, and
the latter is responsible for writing out events that may have new data attached, or may have been
�ltered, to an output �le. DHInput and DHOutput are, as of 3.11.0, the default input and output
modules for use with �les that are in ROOT format, superseding FileInput and FileOutput. (The
\DH" stands for \data handling.") These modules can be used not just to read or write �les on
local disk, but also to read and write �les, �lesets, and datasets in the data catalog. You must talk
to these modules to specify the input and output �le names. Thus, you will de�nitely be talking
to an input module every time you run an AC++ program.

When you talk to DHInput, you can specify local input �les with the syntax input file

InputFile.root, just as was done for the FileInput module. If you are running on a machine
with access to the data catalog, you can use the more powerful include command to read �les
that are in the catalog; the use of include will be described below. (You can still read in a local
disk �le with include, but you must have a / somewhere in your �le name, or else the module will
think that you are trying to read a �le in the data catalog.) The syntax for output modules will

3

be discussed below.
When talking to the input module, you might �nd a need to create a \hidden list," which is

a list of objects in the event record that should be hidden from your code. For instance, if you
are running on a �le that has been through both Level 3 and production, you may not want to
examine the Level 3 results at all. (If Level 3 found a muon, and production found the same muon
again, you don't want to think that there are two muons in the event.) To create a hidden list, use
the command hideList set <process name>, where process name is L3 for Level 3 and PROD for
production.

There are other input and output modules besides the standard ones that are meant for use
with the di�erent �le formats that exist in the online and Level 3 systems. It is possible for multiple
input or output modules to be available in a single AC++ executable, but only one of each can be
active at a given time. You can specify which one is active with the command module input

MyInputModule or module output MyOutputModule.
There are also several other modules which are (or should be) included in every AC++ program;

they are called \managers" and handle tasks such as error logging, talking to the calibration and
geometry databases, interacting with output histogram �les, and so on. These don't interact with
the data in the same sort of way.

When you decide at run time which modules you will use, you need to tell AC++ their names
and what order you want them to run in. (Obviously, you would want to run the tracking modules
before you run the muon modules.) This is done by de�ning a \path." By default, AC++ creates a
path with all of the available modules that is given the name AllPath. Since each AC++ executable
can have di�erent modules linked in, each executable will have a di�erent de�nition of AllPath.
You can use this path, or de�ne your own if you don't want to use all of the modules, or want to
run them in a di�erent order. The syntax for creating a path is path create PathName module1

module2 module3 ..., where the module names are listed in the order you want them executed.
Whenever you de�ne your own path, be sure that ManagerSequence is at the beginning of it. A
sequence is a collection of modules, and this particular sequence includes all the necessary manager
modules mentioned earlier.

Once a path is de�ned, it needs to be \enabled" for it to be active. When you start AC++,
there are no paths enabled, so you must enable one via a command with the syntax path enable

PathName. It is possible to de�ne and enable multiple paths. An event that comes through AC++ will
go through every enabled module in every enabled path. A single module can appear in multiple
paths, but it will only be run once on each event no matter how many times it appears. However,
if you have cloned the module, each copy of the module runs once. The command show path will
show you all the paths that are de�ned, and which ones are enabled. If you run an AC++ program
and it appears to do nothing, you probably forgot to enable a path; this is the most common AC++

mistake that you will make. (So don't forget!)
Events that are to be sent to an output data �le, with any additional information that has been

added to the event record during processing, go out through a \stream." Streams must be de�ned,
and each stream must be associated with a path. Since there can be multiple enabled paths, a single
AC++ job can have multiple output �les, with events that may have gone through di�erent modules,
or modules that have di�erent parameter sets. If di�erent paths have di�erent �lter modules, then
events could be directed to some output �les but not to others. Streams are de�ned in the talk-
to of the output module. This is a two-step process. First, a stream is created and associated
with an output �le with a command of the syntax output create MyStream output.root, where
MyStream is the (completely arbitrary) stream name and output.root is the output �le. Then, the
stream is associated with a path with a command of the syntax output path MyStream MyPath.
If you are using the DHOutput module for this, there must be either a . or a / in your �le name,

4

or else the module will try to put the �le in the data catalog.

2.2 AC++ in Action

Let's try running a simple AC++ program that has already been compiled for you, called AC++Dump,
which allows you to dump out the contents of data banks or other \storable objects." You run it
by typing its name, AC++Dump, on your Unix command line.

Here is a set of commands that can be used with this program to dump the contents of the
EVCL and LRID banks (strictly speaking, the \storable banks," as we shall see), which give some
of the most basic information about each event (such as run and event number). In addition, we
write the events to an output �le, for demonstration purposes.

path enable AllPath

talk DHInput

input file $env(VAL_DATA_DIR)/top175.root

exit

talk DHOutput

output create mystream output.root

output path mystream AllPath

exit

talk EventDump

bankList set EVCL LRID

classList set EVCL_StorableBank LRID_StorableBank

exit

begin -nev 5

exit

Let's review what happens. First, we enable the default path; remember that no paths are
enabled when you start. Since EventDump is the only active module in AllPath, and event dumping
is all we want to do, that path will do the job. Then we talk to the DHInput module, and specify
the input �le name. We need to use $env() to make AC++ translate the VAL DATA DIR environment
variable on fcdfsgi2. The command show input would allow us to verify that we had given the
right �le name. Then we talk to the DHOutputmodule to specify an output �le. We see the two-step
process, creating the stream and associating it with an output �le, and then associating the stream
with a path. At this point, we could type show output to see a list of streams and output �les.

Then, we talk to the module that we are interested in, EventDump. How do you know what
commands are available in the talk-to? Type help to see all the options, and consider trying some
of them. We invoke the bankList command, setting a list of banks that we want dumped out
in hex format. We choose the EVCL and LRID banks, which have event header information. In
addition, we invoke the classList command, setting a list of classes that we want dumped in a
prettier format. If we want to print particular banks, we must give the full class names, which are
EVCL StorableBank and LRID StorableBank in this case. This procedure should work for any of
the four-letter named banks. You could also add non-bank classes to this list, such as the various
analysis-level \storable objects," and you should try doing so on a �le of reconstructed events.
Other interesting EventDump commands are list, which will give a list of all stored objects in the
event, and summary, which will give a more concise list.

After leaving the talk-to, we tell AC++ to begin processing the data, but only to do �ve events.
And that is it; the program should open the data �le, and give both a hex dump and a formatted
dump of the EVCL and LRID banks. These particular hex dumps are not terribly instructive, but

5

can be generally useful for debugging. If we want to dump �ve more events, we could give the
command cont -nev 5.

To verify that you made the output �le, you could run the program again and use output.root
as your input �le. It should have �ve events in it.

3 Data Catalog

Large samples of both real detector data and simulated events are kept in the data catalog. You
have direct access to the catalog from fcdfsgi2 through the DHInput module.

Within the catalog, data are organized into datasets, each of which is composed of several
�lesets, each of which are in turn composed of several �les. In the DHInput module, you can read
any of these, using the include dataset, include fileset, and include file commands.

It is the �rst of these that is the easiest to use. Dataset ID's typically are six letters long. The
�rst letter indicates the data logging stream that fed this dataset. Data from stream A end up in
datasets that start with a and so forth. The last letter indicates what has been done to the data;
r is for raw data, a is for reconstructed data, b is for data that has been reconstructed on a second
pass through the farms, and so forth. The most interesting datasets to you (for the moment) are
most likely aphysr and aphysa.

To analyze the data for a particular run in a particular dataset, give the command

include dataset <dataset ID> run=<run#>

selectEvents set run=<run#>

Note that you need to specify the run number twice. The �rst line selects �les that contain data
from that run, and possibly other runs. The second line ensures that you only see events from the
run of interest.

You can specify multiple runs by adding multiple conditions to these lines, e.g. run>=<run#1>
run<=<run#2>. If you wish to specify a particular event, you can do so on the selectEvents line,
with event=<event#>. However, you will have to scan all the �les of this to �nd that particular
event, which could take some time.

Simulated data �les may be more instructive from a beginner's standpoint, since they contain
\data" from a complete detector, and have physics processes that can be reconstructed. A stable set
of simulation �les are those that were generated as part of the second Mock Data Challenge, which
can be found in /cdf/data02/s5/mc/data/mdc2/sim on fcdfsgi2. Details about the generation
can be found on the simulation Web page, but remember that these �les are now rather old,
and may not be so useful to you. These �les are the output of the detector simulation, not of
reconstruction, so you will not �nd any analysis-level data structures there. (Once you have gotten
through this note, you may want to try running ProductionExe on one of these �les to see what
happens.) These �les are just small samples of our total Mock Data Challenge production. Larger
samples are kept in the data catalog. They are split into datasets by physics topic, and di�erent
run numbers within each dataset have a di�erent physics process. Again, see the simulation Web
page for more details about these �les.

Much more information about the use of the DHInput and DHOutput modules can be found in
the DHMods/doc area in the code browser.

6

4 Setting Up Your Programming Environment

4.1 Test Releases

Now that you have tried an AC++ program that someone else wrote, compiled, and linked, you
should try to do these things for yourself. To do so, you must set up a \test release" in a directory
where you have access. It is where the Run 2 software system will keep various �les it needs to do
the compiling and linking; it is essentially a skeletal copy of the full o�ine release, with some of
the same directory names, but none of the 230 packages that are in the real release.

The command to make a test release is

newrel -t <base release> <new release name>

The -t option says that this is a test release, not a full release. You have to give the name of
a base release that will be the basis of your test release, and that should be the release that you
want to use; it can be any release that is installed on the computer where you are working, such
as development or 3.15.0. You also have to give a name for your release; you will end up with a
new subdirectory called <new release name>. This name is arbitrary, and you can have multiple,
independent test releases with di�erent names. Then, cd to this new directory to use your test
release. Among the subdirectories of your test release are lib and bin, which is where the library
and executable (binary) �les that you make will be kept. There is also a GNUmakefile, which is
used to drive the compiling and linking process.

Your library and binary �les will be very large, and while you will want to keep your test release
and the source code therein on a disk that is regularly backed up, you will probably want to keep
the large �les in a scratch area where disk quotas are not enforced. This is easily accomplished
if you have a �le called .srtrc in your home area. The newrel script will use this �le to make
soft links from your lib, bin, and tmp areas to a scratch disk. On fcdfsgi2, feel free to copy
�bloom/.srtrc to your area, and modify it if you think you need to. (You probably don't.)

4.2 Code Repository

But at this point, there is no code for you to work with. All of the o�ine code, including some
sample AC++ modules, is kept in a CVS repository on cdfsga. You have read-only access to this
repository from any machine. If you need write access for particular packages, you will �rst need to
arrange permissions with the CDF code management group, and then have a valid Kerberos ticket
whenever you modify the repository.

You can check out a \package" of code and work on it with the command

addpkg <package name>

By default, this command gives you the version of the package that is in the base release you
speci�ed. If you are working from development, that means that you always get the latest-greatest
version. If you are working from a frozen release, you will get the version from the time the release
was frozen. If you want the latest-greatest in that case, use the -h option (for \head" of the
repository) with this command.

One of the dangers of working with the development release is that it can change from day
to day. In particular, if you have made changes in a package that you checked out which are not
compatible with changes made in other packages, your programs may fail to link or start crashing.
You are responsible for keeping your test release up to date. (By the same token, it is dangerous
to add a package from the head of the repository to a test release based on a frozen release.)

7

To do this, give the command cvs update from the top directory of the release, or cvs update

<package name> if you only want to update a particular package. The CVS system will then sort
out which �les need updating. It will give you a list of �les that it is updating in your release because
they changed in the repository (indicated by the letters U or P), �les that you have modi�ed but
have not changed in the repository (indicated by M), new �les that the repository does not know
about (indicated by ?), and �les that you have modi�ed in such a way that they are in conict with
the repository (indicated by C). If the conicts are minor, CVS may choose to modify your �le to
resolve them. You might not want want this to happen. To see what CVS intends to do without it
actually happening, insert the -n ag between cvs and update. After updating, your release will
be consistent with the repository at that moment.

4.3 Compiling, Linking, and Running

The CDFSOFT2 DIR directory shows you what packages are in the base release, and all of those are
available to you. However, the package that we are using as an example to get started with is not in
any release, and is therefore not visible there. It is called ExampleMyModule, and since it is not in a
release you will need the -h option to check out a copy. This package is a �ne enough jumping-o�
point. You could also make a completely new package in your test release with the newpkg script,
and then add code to it, but the GNUmakefile requires some modi�cations to make your programs
compile and build, so start with ExampleMyModule, since it is in proper shape already.

When you add that package, you will be given a new subdirectory called ExampleMyModule,
and it comes with code for an AC++ module called MyModule, which attempts to make a J/ mass
plot, and for another module called ExampleTrackAnalysis, which makes histograms of some
charged-particle tracking quantities. The former module relies on storable banks as analysis-level
data structures, a mode of working that should go away, but it does make a pretty plot from Run
1 data. You should not study this code in any detail. We use MyModule merely to get started, and
then discuss ExampleTrackAnalysis in detail below.

To compile the source code and link an executable, type gmake from the top-level directory of
your test release. This will activate the make�les in your test release, and should be completed in a
few of minutes, at most, for this particular package. Whenever you make any changes to your code,
or do a cvs update, or if any libraries that you link to have changed (which can happen overnight
if you are working from the development release), you should return to this directory and gmake

again. The system is pretty smart about only recompiling the �les that need to be recompiled, so
the process will be relatively quick on successive iterations. You can also tell gmake to perform
only part of the building process. For example, gmake nobin will do everything except build the
executables. gmake bin will then do that last step. In addition, you can tell gmake to only do
particular steps of the process on particular packages, if you have more than one package in your
test release. If you wanted only to build the executables in ExampleMyModule, for instance, type
gmake ExampleMyModule.bin. Some packages have \test" executables that are not made as part
of the regular build process; these can be built with the gmake tbin command.

Linking an executable takes an unfortunately long amount of time, especially on fcdfsgi2.
There is a mechanism to get around this that is available for the �rst time in version 3.12.0:
dynamic linking. In this scheme, the code for the packages in your test release are compiled as
shared libraries, rather than static libraries, and are linked into your executable at run time, rather
than at build time. Thus, you only need to build the executables for your test release once. If you
make any changes to the code in your test release, you only have to recompile it (gmake nobin

only), and your changes will be linked into the executable at run time, without you having to relink
the executable. To enable dynamic linking, setenv USESHLIBS 1 before you setup cdfsoft2, and

8

it will work the next time you try to build your test release. You will save many minutes each time
that you change your code!

Now you will have an executable program with the puzzling name ExampleMyModule test in
the bin/<OpSys>-<CompVer> subdirectory of your test release. Note that this area is in your path,
and it's ahead of the similarly-named area in the base release, so you can run this program just by
typing its name without the directory name in front of it. You can give commands interactively
while running, or you might want to try using the TCL �le that has been provided with the package.
To do this, type

ExampleMyModule_test ExampleMyModule/run.tcl

on your Unix command line. (If you are not running on fcdfsgi2, you will need to change the input
�le name in the TCL �le.) Most of the commands in the TCL �le will look familiar. (The run.tcl
�le will activate only MyModule, while run track.tcl will activate only ExampleTrackAnalysis.
Feel free to try both!)

The program will take a minute or so to run, and when you are done you will have a �le called
appexample.hbook in your area. (Common pitfall { if appexample.hbook already exists, your
program will crash! Be sure to remove it. The TCL �les in the package will do this for you.) This
is in fact an HBOOK �le, so you can open it in PAW. Like the old Analysis Control, each module
puts its histograms in a di�erent subdirectory of the �le; that way, no one has to worry about
which module is using what histogram numbers. The subdirectories have the same names as their
modules, so cd to the MYMODULE subdirectory, and there you will �nd your �rst Run 2 histograms
(�lled with Run 1 data).

So what happened here? How did you make the executable? How can you add other modules
to it? What happened in the module? How can you do all of this yourself?

5 Assembling Your Executable

How did you end up with an executable called ExampleMyModule test? You can get some idea of
how this happened in the �le ExampleMyModule/GNUmakefile, which de�nes what happens for this
package when you type gmake. Make�les are notoriously inscrutible, but towards the bottom you
will see the line BINS = ExampleMyModule test, which means that a binary �le (i.e. executable)
with this name will be created.

In each package, you are allowed to make as many binaries as you want, but, for complicated
reasons, only one of them is allowed to have a di�erent name than its source code �le. We see
such an example here. ExampleMyModule test is de�ned as your one and only COMPLEXBIN, and
BINCCFILES = BuildExampleMyModule test.cc indicates that this �le is going to be part of it.
We will see in a moment how this �le is the basis for the executable.

If you are willing to let the executable have the same name as the �le with the source code,
life is easier. If you want to add executable with the name MyExe, all you need to do is have a
source �le called MyExe.cc, and to add the word MyExe to the BINS line. Exercise: Make a copy
of BuildExampleMyModule test.cc with a di�erent name, and try making an executable with that
name.

But what goes on in the source code in BuildExampleMyModule test.cc? Taking a look inside,
we �nd that this �le has the code for several methods of a class called AppUserBuild, another
puzzling name. A few quick comments on C++ will be helpful. For our purposes, a C++ class is a
collection of variables, and functions (\methods," in object-oriented parlance) that have access to
these variables, stored together somewhere in memory. Somewhere else in the o�ine system, the

9

AppUserBuild class is declared, with a given set of method names, and the input arguments to the
methods. There are other pieces of code out there that will try to call these methods with these
arguments at particular times during the execution of your program. However, just what happens
when these AppUserBuild methods are called has NOT been speci�ed { that is left for you to do!
And it is in the methods of AppUserBuild that you get to de�ne what modules will be included in
your executable. The \beauty" of this is that some other routines elsewhere in the AC++ structure
can call methods of this class which will always have the same name, but each user gets to de�ne
what those functions do for their own executable.

The class declaration is done in a header �le which must be \included" in the �le with the
actual source code, so that the source code �le itself knows what methods it is supposed to be
de�ning. In this particular �le, BuildExampleMyModule test.cc, you can see the line #include

"Framework/APPUserBuild.hh", which points to the header �le in question.
The bottom line of this discussion is that the AppUserBuild class is the moral equivalent of main

for an AC++ program. This is the spot where you get to de�ne what modules go into your particular
executable. This particular �le, BuildExampleMyModule test.cc, gives a perfectly �ne example
of how to include modules. The action all takes place in the constructor for the class. The �rst
thing that happens is that a bunch of modules are added via the routine addCDFrequiredModules.
These include the input and output modules and the manager modules, so you always want to have
this line. The routine addAllStorableObjects makes your executable aware of the various data
structures that may be in your input �le. Then, three other modules are added with a function
called add { HepHbookManager, MyModule, and ExampleTrackAnalysis. Just what the syntax
means requires another lecture on C++, which we will skip for simplicity. But if you want to add
an additional module to this executable, just follow the same syntax as for the modules that are
already there.

How does AppUserBuild know what these modules are? They are de�ned in their header
�les, so those header �les must also be included. You can see that in the set of lines under the
"Collaborating Class Headers" comment. In Fortran, you used include �les to make di�erent
subroutines aware of external variables in common blocks. In C++, you use header �les to make
di�erent classes aware of external classes and their functions. So, to add an additional module to this
executable, make sure that you have the header �le listed in the include lines, and then just follow
the same syntax as for the other modules. Actually, there is one more �ner point { the GNUmakefile
may not know where to look for the compiled code for these other modules when you try to link
everything; it has to know what library of compiled code must be searched. In that �le, you will
�nd a bunch of lines that look like override LINK FrameMods += ExampleMyModule. (Note that
this is the GNUmakefile for ExampleMyModule, not the one at the top of your test release.) You
may need to add more such lines, in which FrameMods gets replaced by the name of the library
containing the module that you want to link in. Typically, this library name is the same as the
name of the package containing the code, but there are a few exceptions. FrameMods happens to be
one of them; this package makes several libraries, such as FrameMods hbook, FrameMods root and
FrameMods dump. We hope that there will soon be a replacement for this mysterious mechanism.

There are a lot of AC++ modules that have already been written for possible inclusion in exe-
cutables. The o�ine group has been reasonably good about putting them in packages that have
the word Mods in their name, like TrackingMods and MuonMods. Use the code browser to help �nd
your way around.

Exercise: BuildExampleMyModule test.cc includes some comments that suggest how to
change your output from an HBOOK �le to a ROOT �le. See if you can follow them; this will give you
a chance to try swapping which modules are used. Also, try adding a completely new module to
this executable, such as the event dumping module. When you are done making these changes to

10

BuildExampleMyModule test.cc (and the GNUmakefile!), type gmake to recompile and relink the
code, and run the resulting executable to see if your changes worked.

6 Inside ExampleTrackAnalysis: How to Make a Histogram

Let's take a look at what is going on inside ExampleTrackAnalysis, which serves as a simple
example of making histograms with analysis-level data structures. (Remember, this module is
linked into ExampleMyModule test, and you can activate this module with run track.tcl.) Now,
every AC++ module is itself (an instance of) a C++ class that has several methods associated with
it. It ultimately inherits from a base class, called AppModule, that represents a generic module.
What happens inside the executable is that AC++maintains a list of the modules to be run (provided
by you in AppUserBuild!), and then it calls the right method of the class at the right time for each
of the modules on the list. Here, the \right time" means at the start of the job, or every time a
new event is read, or any other point in the progress of your analysis job where a module should
perform a particular task. So as long as each module has a uniform set of method names, this will
all work very simply, even if you don't understand this explanation.

What are these uniformly-named methods? You can see the entire list in the header �le for
AppModule, which is in the Framework package. When you make your own module class that
inherits from AppModule, you are allowed to override any of these methods to make them do what
you want. The ones you will most likely want to override are beginJob, which is called when you
start your analysis program, and event, which is called for each new event in the data �le. There
are also beginRun, endRun, endJob, and abortJob methods, which are called at the times implied
by their names. To override one of these methods, you must declare it in the header �le for your
own module, and then you must de�ne what it does in the source code �le.

Let us examine ExampleTrackAnalysis.hh, which is the header �le for this class, de�ning its
methods and data members. First, we see that the class ExampleTrackAnalysis inherits from a
base class called HepHistModule. HepHistModule ultimately inherits from AppModule, so this class
does also. Any module that will be producing histograms must inherit from this base class. In
frozen releases previous to 3.5.0, HepHistModule had a non-regular set of method names; these are
still available for backwards compatibility, but should not be used.

Note that we are using the HepTuple histogramming package in this module. HepTuple was
written to be an interface to either HBOOK or ROOT, and it is straightforward to change between the
two. (In fact, this is what you did in the last exercise { just switch from the HepHbookManager to
the HepRootManager in your AppUserBuild class.) In the long run, many users will probably want
to use ROOT directly, without the HepTuple interface; we will document this in the future.

The �rst method declared for the ExampleTrackAnalysis class is the constructor, which is in
fact what got called in AppUserBuild. You will note that it comes with default arguments for the
name of the module that the user will see in AC++, and its description. In AppUserBuild, where the
constructor is called, these defaults can be overridden, but aren't in our example. There are also
the beginJob and event methods, where most of the work will be done. The other methods are not
of great importance for getting started. However, if there were any other methods of AppModule
that you wanted to override, e.g. if you wanted to print out some end-of-job summary information
in endJob, you would need to declare them in this header �le.

At the bottom, there are several data members that are declared private. This means that other
classes don't have access to them, but since they are de�ned in the header �le, they are de�ned
globally within this class, so every method has access to them. Some are declared as HepHist1D*,
which means that they are pointers (currently uninitialized) to one-dimensional histograms, and

11

there is also a HepNtuple*, a pointer to an ntuple. If you wanted to add additional histograms to
this module, you would declare them similarly.

Now let's move on to the guts of the code in ExampleTrackAnalysis.cc. Here there is a chunk
of code for each method that is de�ned in the header �le. In some cases, there is not much to
it { nothing is done in the destructor, and in the constructor we merely initialize the base class
with its constructor (always be sure to do that in any module you write) and initialize the talk-to
(discussed below).

Obviously, a lot more action is going on in beginJob, where histograms are booked, and event,
where histograms are �lled. If you want to book a histogram, you need to have memory allocated
in the right place so that the histogram ends up in the right �le, and so forth. This is handled
through one of the \manager" modules, which you make contact with through the HepFileManager
class. The beginJob method has a line that gives you access to it. Then, shortly below, you see
the statements that book an ntuple and histograms, associating them with the pointers that had
been declared in the header �le. This is done through methods of the �le manager. These pointers
now point to something that actually exists, so you can work with these objects. Note the syntax
for booking histograms, which is a little di�erent from what we are used to in HBOOK. The order of
arguments is the title, the number of bins, the lower and upper edges, and the ID number. The
ID number is in fact an optional argument { if you don't specify one, HepTuple will choose one for
you. (Optional arguments of a method are always placed at the end of the list in C++.) You can
now use this histogram pointer variable (not the ID number) to refer to your histogram elsewhere
in the module. The syntax needed to create a 2D histogram (of type HepHist2D) is quite similar.
As you can see, making ntuples with the HepTuple package is unfortunately complicated.

Finally, we get to the event method. This method gets called for each new event in the data
stream. Here we loop over reconstructed tracks (or CdfTrack objects, really), and �ll the ntuple
and histograms with some of their parameters. We will explain below how one goes about accessing
data, but you can get a schematic idea of what is going on { methods of various objects are being
called to get the information that you want. But at the end, we call the accumulate method of the
histogram pointers, and the capture and storeCapturedData methods of the ntuple pointer, and
that is what captures the data into the histograms and ntuple. This is all you have to do. AC++

will worry about writing your histograms out to a �le when you are done.
Exercise: Add more histograms to this module.

7 Advanced Module Features

The ExampleTrackAnalysis module also has a talk-to, and it can serve as �ltering module. Here,
we explain how to incorporate these features into your own module.

7.1 Writing a Talk-To

If you want to have parameters in your module that a user can set at run time, it is pretty easy
to write a talk-to. (If you have ever done this for Run 1 code, you will �nd it much easier in Run
2!). Data structures that hold the talk-to information are kept in classes that start with the name
AbsParm, and can be found in the Framework package. If you want to de�ne a talk-to variable of
an arbitrary type, you can use the AbsParmGeneral class. When you declare the variable, use the
syntax AbsParmGeneral<type> myParm, where type is the data type. There are some pre-written
classes that have particular variable types already set. For instance, AbsParmDouble will hold a
double-precision variable that can be set with a talk-to, and AbsParmBool will do the same with a
boolean variable.

12

As an example, imagine that you wanted to have a pT cut that is set by the user. First, declare
the variable in the private: section of the header �le of your module, like so:

AbsParmGeneral<float> _ptCut;

Then, three things should be done in the constructor method of your module. First, you must
initialize it, by telling it the name that will appear in the talk-to menu in AC++, telling it what
module it belongs to (this module itself, obviously, which you refer to with the variable this), and
its initial value. Second, you can (and probably should) add a description of the variable, which
will be printed when the user types help in the talk-to. Third, you must append it to the modules
list of talk-to commands, which is done with the append method of the command list, which you
access with the function commands(). Here is what a constructor would look like with these three
steps in place. Note that the �rst step is done as part of the initialization of the constructor.

ExampleTrackAnalysis::ExampleTrackAnalysis(

const char* const theName,

const char* const theDescription)

: HepHistModule(theName, theDescription),

_ptCut("ptCut",this,0.0)

{

_ptCut.addDescription("\t Save event if there exists a \n

\t track with pT above this value.");

commands()->append(&_ptCut);

}

Now the user will be able to set the value of ptCut in the talk-to. Your code will want to
access the value later on. This is done via the value method of the AbsParm classes:

float ptCut_value = _ptCut.value();

Now you can use ptCut value as you would any other oating-point number.

7.2 Filter Modules

If you wish to use your module as a �lter, it must inherit from AppFilterModule, which inherits from
AppModule. As it happens, HepHistModule inherits from AppFilterModule, so any histogramming
module can also be a �lter module.

In the event method, you should construct a boolean variable that indicates whether the event
should be kept or not. For safety purposes, it is probably best to initialize it as false: bool

filter pass = false. At the end of event, you tell this module whether or not the event passed
the �lter:

this->setPassed(filter_pass);

That is all that you have to do in the code. At run time, you must enable this module as a
�ltering module. At the AC++> prompt, give the command filter MyModule on to enable it. You
can also use a module as an anti-�lter; the command filter MyModule veto will cause AC++ to
save all events that failed the �lter.

13

8 The Event-Data Model

The \event-data model," or EDM, describes how data within each event are stored within memory,
and on disk. Over the past two years, there has been much e�ort on CDF to build a better
EDM, one that takes full advantage of C++, requires less detailed knowledge of the data format
on the part of the average user, and has safety features that keeps data from getting accidentally
overwritten in memory.

You may not have realized that CDF ever had an EDM, but there has always been one. In
Run 1, the EDM was implemented through YBOS. From anywhere in your executable, you had full
access to a very large, single-indexed array which held all the data for each event. For instance,
each track would have a number of data elements associated with it, which would appear, in a
speci�ed order, at some location in the big array. These contiguous collections of array elements
were called \banks." When you reached a new event, this array was refreshed from disk. To �nd a
particular datum, such as the momentum of a particular track, you called a function that gave you
an index into the array that pointed you to the start of the track bank. Then you had to know how
far down from the start of the bank to �nd the momentum. If there were many tracks, they could
only be distinguished by the position of their banks in the array. This array could be overwritten
by any routine. If the event were to be written out to the data �le, the array elements, in their
current state, would be put on disk. Among the disadvantages of this EDM are that the user had
to know the organization of each bank, and banks could be modi�ed by one routine without a later
routine ever knowing about it.

The EDM for Run 2 looks a little di�erent. Here we describe the various concepts that you
need to know, or might want to know, to �nd your way around your data.

8.1 Event Record

The eventmethod of every AC++module has the input argument AbsEvent* anEvent. This pointer
to the \event record" is your gateway to any data that are in this particular event. (Actually,
anEvent is globally visible from any class; if you include AbsEnv/AbsEnv.hh, you can access it
through AbsEnv::instance()->theEvent(), but this is not encouraged.) The event record pointer
is refreshed for each new event in a data �le.

You can imagine that the event record is a big container holding all sorts of di�erent data
structures. These data structures are de�ned by C++ classes, and the name of the structure in
the event record is the same as the name of the class. Since each one of these structures in the
record is an \object," in the C++ sense, we will refer to them that way. An object that is in
the event record, and thus can be read from and written to a �le, is required to inherit from the
StorableObject class.

Each of the objects in the event record is unique. Associated with each is a unique number that
is assigned when the object is added to the event record. Even if a particular object is removed from
the record, its number cannot be reused. But you never have to know what this number is { these
objects can also be identi�ed by C++ class name (what you will probably do most frequently), by a
text string that is associated with each object, or by a label that identi�es what process (e.g. Level
3, production) created the object. Each of the objects in the event record are also non-modi�able.
If you feel you have the need to modify objects in the event record, you should make your own
copy, modify that copy, and put the new objects into the event record.

Creating a storable object and putting into the event record is not that diÆcult, but the average
user won't be doing it that often; typically, the production executable puts objects into the record,
and the end user reads them. Reading an object from the event record is therefore something you

14

must do in your AC++ module if you want to look at the data, so we describe how to do it here.

8.2 Event-Record Iterators and Handles

There are two steps required to examine a particular object in the event record. The �rst step is
to actually locate your object within the event record, a container that can hold many di�erent
objects. This is done by creating an \iterator" (the C++ equivalent of a looping index) that can
be used to step through the event record. Why might one want to do such stepping? While every
object in the event record is unique, there may be several objects of each class. For instance,
there might be several collections of tracks in the event record, each created by a di�erent tracking
algorithm. The iterator will allow you to step through the record and access each collection in turn.
Of course, some of the objects in the record will be one-of-a-kind, like an EVCL bank.

Imagine that you are looking for all objects of type MyObject in the event record. You make
the iterator, which we will call obj iter, like so:

EventRecord::ConstIterator obj_iter(anEvent, "MyObject");

This line essentially says, \Make me an iterator that steps through all instances of MyObject in
anEvent." It's a ConstIterator because objects that you are getting are constant, i.e. non-
modi�able, as all objects in the event record must be.

\All instances of MyObject in anEvent" really means all instances that are visible to your
module, i.e. those that are not on the hidden list. If your �le has been processed multiple times,
e.g. by both Level 3 and production, you could have multiple copies of the the same object in the
event record, and you will see both of them, unless you specify that one or more processes be on
the hidden list when you talk to the input module.

The variable obj iter now is associated with the �rst MyObject that is found in the event. But
how do you know if there is in fact such a MyObject in the event? After you create the iterator,
you can check if it is valid, with the method obj iter.is valid(). If the method returns a value
of true, then the iterator is useable. If there is more than one such object, you can increment the
iterator, and it will point to the next one: ++obj iter. (The iterator is smart enough to not point
to objects in the event record that are not of type MyObject.) Before you use the iterator, you
should always check that it is valid; once you have stepped through every MyObject in the event,
it won't be.

The above method of creating the iterator is not the only method. You can also create the
iterator by specifying any of the identi�ers of a storable object, such as the description text string
or the creating process. Better still, you can create logical combinations of these \selectors" with
the usual &&, ||, and ! operators, which could allow you to specify both an object name and a
description string.

The second step is to go from this iterator to something that you can use to actually access
MyObject. This is done by creating a \handle" that is used to grab the object. A handle is very
much like a pointer, but has some code underneath it which handles memory management. (This
is an important issue when creating storable objects.) A handle (in this case, a ConstHandle, since
this object is coming out of the event record) for MyObject is made like so:

ConstHandle<MyObject> obj_hndl(obj_iter);

This line says, \Make a handle for MyObject out of obj iter. Once you have the handle, you
can treat it like a pointer to MyObject, and call methods of MyObject in the usual way, with the
dereferencing operator (better known as ->):

15

int myObjectSize = obj_hndl->size();

(If MyObject has a method size(), of course.) If you prefer the usual method operator, better
known as ., you can convert your handle into a reference:

const MyObject& object = *obj_hndl;

int myObjectSize = obj.size();

Note for advanced C++ users: A potentially useful feature of handles is that you can use
them to take advantage of class inheritance. Suppose that MyObject inherits from a class called
MyObjectParent. Then, you can make a handle out of the event record that will act like a pointer
to a MyObjectParent instead of a MyObject:

ConstHandle<MyObjectParent> parentobj_hndl(obj_iter);

This technique is used in programs such as Edm ObjectLister, which gives you a list of all the
objects in each event in a data �le. The program iterates through every object in the event
record, and makes a ConstHandle<StorableObject> for each of them. It can then call methods
of StorableObject, and never has to know about the speci�c features of each object in the event.
Of course, if you do use this technique, you cannot call the methods of the child class MyObject.

8.3 Links

Analysis-level objects are often built from a number of lower-level objects. For instance, a muon
has a track associated with it. The muons are kept inside a di�erent storable object than the tracks.
How can you �nd your way from one storable object to another?

The EDM provides a means for this, called a link. Links behave like handles, except that they
can also be added to the event record as part of a storable object. Each muon carries a link to
the track associated with it. Thus, when you have pulled an muon out of the event record, you
can immediately get another handle (the link) for some other object in the record (the track). You
can then use the link as if it is a pointer to the object, just like you would do with the handle.
The syntax of the class name is even the same { a link to a MyObject is of type Link<MyObject>.
Examples of links can be found in the discussion of electrons and muons below.

9 Using CDF Data Structures

After the raw data have been run through the production executable, there will be a standard set
of objects in the event record. Here, we give some examples of how to use them.

While all of these structures can be found in the event record using the techniques of the previous
section, some of them come with shortcuts that allow you to condense the two steps (making the
iterator, then making the handle) into one. The examples given below have, wherever possible,
taken the necessary steps so that the . operator can be used, rather than ->; other pieces of
example code may not take these steps, and therefore not use the same syntax.

Of course, each class will have its own methods, which can be found in the header �le for the
class. Be sure to put #include statements in your code if you want to use these methods.

9.1 Storable Banks

The StorableBank classes are used to hold raw detector data. It is unlikely that you will need to
access any of these to do a data analysis, but you will if you want to do low-level detector studies.
Any storable bank can be obtained from the event record by the means described above.

16

All of these classes have names of the form XXXX StorableBank, where XXXX is the four-letter
name of the bank, just like in YBOS. And the data are structured in the same way as YBOS banks:
a one-dimensional array.

Any element of any bank can be obtained if you know its position in the array. However,
many banks have functions that will allow you to get particular elements without knowledge of the
position. These functions will naturally di�er from bank to bank, so look at the header �le for the
appropriate class. Unfortunately, the StorableBank classes have very challenging header �les, and
you may want to sit down with someone who is an expert with that particular bank.

Here is a quick example of how to access a bank, using the tools described in the previous
section. The XXXX StorableBank and its methods are completely �ctional, created for the purpose
of this example.

EventRecord::ConstIterator XXXX_iter(anEvent,"XXXX_StorableBank");

while (XXXX_iter.is_valid()) {

ConstHandle<XXXX_StorableBank> XXXX_hndl(XXXX_iter);

const XXXX_StorableBank& XXXX_bank = *XXXX_hndl;

int version = XXXX.version();

}

9.2 Tracks

Tracks in CDF can be reconstructed with a great variety of tracking algorithms. However, all of
these track types are represented in the event record by a single class, CdfTrack. The event record
can contain not just single tracks, but \collections" of tracks, each of which has tracks that have
been found with a particular set of algorithms, such as COT-only algorithms, or algorithms that
involve the silicon detectors. Thus, it is possible to pull an entire collection out of the event record.

The storable objects, are really \wrappers" around the actual collections, where the tracks
really are. (The wrapper is needed to satisfy some requirements of the EDM; the actual collection
is not directly storable.) Thus, once you have pulled the storable object out of the event record, you
will need to pull the actual collection of tracks out of the storable object, which constitutes a third
step beyond the usual two-step process. The CDF wrapper objects typically provide a contents()
method that gives you access to the actual collection.

For a data analysis, you will want the \best," or \default," set of tracks, which would have the
greatest amount of information possible (both COT and silicon hits, if both are available), without
any duplication. This set of tracks will be distributed across the di�erent collections that may be
in the event record. Thus, it is also possible to create a track \view," which consists of pointers to
tracks that are in di�erent collections.

Here is how to get a \default" set of tracks out of the event; the default tracks are de�ned
here as those which do not have any other tracks derived from them. For instance, if a COT track
has been found, and then silicon hits are added to it to make a new track, the latter will be in
the default set and the former will not. In the tracking code, a shortcut is made to condense the
usual two-step process into one, so that the event-record iterator is hidden from you. In this code
fragment, we loop over the default tracks, and extract various quantities of interest. Additional
functions can be found in the CdfTrack header �le, and in the header �les for the classes it inherits
from, such as SimpleReconstructedTrack, in the TrackingObjects package.

CdfTrackView_h view_hndl; //This will be the handle for the view.

17

//This line does the two-step process, which makes view_hndl useful.

//Note also we check that this came out OK.

CdfTrackView::Error trackStatus = CdfTrackView::defTracks(view_hndl);

if (trackStatus == CdfTrackView::OK) {

//Pull the actual collection of tracks view out of the handle.

const CdfTrackView::CollType & tracks = view_hndl->contents();

//Now we can actually iterate over the tracks, by constructing

//a CdfTrackView iterator.

for (CdfTrackView::const_iterator itrack=tracks.begin();

itrack!=tracks.end(); ++itrack) {

//This double-dereference looks strange, but things get easier!

const CdfTrack & trk = **itrack;

//Here are some functions you may want to use:

float pt = trk.pt();

float phi0 = trk.phi0();

float d0 = trk.d0();

float z0 = trk.z0();

float eta = trk.pseudoRapidity();

HepVector p = trk.momentum();

int algorithmNumber = trk.algorithm().value();

int numCOTHits = trk.numCTHits();

int numSIHits = trk.numSIHits();

//You can also look at properties of the parent of this

//track, if the parent exists.

float parentPt;

if (trk.parent().is_nonnull()) parentPt = trk.parent()->pt();

}

}

Why do we have to do a double-dereference to get to something that is of type CdfTrack? This
is because the CdfTrackView is a collection of pointers to tracks. The �rst dereference is needed to
convert the iterator to the pointer, and the second is needed to convert the pointer to the CdfTrack.
This double-dereferencing scheme will be common to any \view" of reconstructed objects.

9.3 Calorimetry

There are three kinds of calorimetry data that might appear in an analysis. The �rst is the energy in
each tower in the entire detector. In the calorimetry code, each tower is represented by a CalTower
object, and the collection of all towers is stored in the event record as a container called CalData.

18

CalData is the equivalent of the Run 1 TOWE bank. The second kind of data is jet objects, which
are formed through the clustering of towers. Each jet is represented by a CdfJet object, and the
entire collection is stored in the event record as a container called CdfJetColl. As in the track
case, there can be many collections of jets, because there can be many jet-clustering algorithms.
You may need to specify which collection you want. Finally, there is the missing transverse energy
(6ET), which is kept in the CdfMet object in the event record.

Here are some examples of how to access these data, with a few basic methods for each object.
The complete list of methods can be found in the header �les for these classes in the CalorObjects,
Jet, and Met packages.

//First make a handle for the data. The two-step process is handled

//with just one line.

CalData_ch calData_hndl; //ConstHandle for the CalData container

CalData::Error calStatus = CalData::find(calData_hndl); //Two-step process

if (calStatus == CalData::OK) {

for (CalData::ConstIterator itower = calData_hndl->begin();

itower != calData_hndl->end(); ++itower) {

const CalTower& tower = *itower;

float energy = tower.energy();

float emEnergy = tower.emEnergy();

float hadEnergy = tower.hadEnergy();

int iEta = tower.iEta();

int iPhi = tower.iPhi();

}

}

//Now get the CdfJets. We specify the "description" to get jets found

//with a particular algorithm. Here, we choose the results of the

//standard JetCluModule, which uses a cone of R = 0.7. After that,

//this looks very similar to the tracking example.

CdfJetColl_ch jetColl_hndl;

std::string description = "JetCluModule"; //not necessarily what you want

CdfJetColl::Error jetStatus = CdfJetColl::find(jetColl_hndl,description);

if (jetStatus == CdfJetColl::OK) {

const JetList& jets = jetColl_hndl->contents();

for (ConstJetIter ijet = jets.begin(); ijet != jets.end(); ++ijet) {

const CdfJet& jet = *ijet;

float jetEt = jet.et();

float jetEta = jet.eta();

float jetPhi = jet.phi();

HepLorentzVector jetP = jet.fourMomentum();

}

19

}

//Finally, we get the missing energy.

CdfMet_ch mEt_hndl;

CdfMet::Error metStatus = CdfMet::find(mEt_hndl);

if (metStatus == CdfMet::OK) {

const CdfMet& mEt = *mEt_hndl;

float missingEt = mEt.met();

float sumEt = mEt.etSum();

float xMEt = mEt.exSum();

float yMEt = mEt.eySum();

}

9.4 Photons and Electrons

In CDF, photons and electrons are both treated as \electromagnetic objects," since both are de�ned
by their deposits in the EM calorimeter. A photon is an EM energy cluster without an associated
track, while an electron typically has an associated track, except in the far-forward plug where
track reconstruction is ineÆcient. Therefore, both of these physics objects are represented by the
CdfEmObject class. Like the tracks, you can access these objects through a CdfEmObjectView.
Here is an example of how to access this view, and how to access information about electrons and
photons. See the header �les for CdfEmObject and EmCluster in the ElectronObjects package
for the complete list of methods.

CdfEmObjectView::handle emObjView_hndl;

CdfEmObjectView::Error eleStatus =

CdfEmObjectView::defEmObjects(emObjView_hndl);

if (eleStatus == CdfEmObjectColl::OK) {

const CdfEmObjectView::collection_type emObjs = emObjView_hndl->contents();

for (CdfEmObjectView::const_iterator

emIter = emObjs.begin(); emIter != emObjs.end(); ++emIter) {

const CdfEmObject& emObject = **emIter;

const EmCluster& emCluster = *(emObject.getEmCluster());

HepLorentzVector emP4 = emCluster.fourMomentum();

double hadOverEm = emCluster.hadEm();

double eta = emCluster.emEtaEvent();

double detectorEta = emCluster.emEtaDetector();

double phi = emCluster.emPhi();

double emEt = emCluster.emEt();

const CdfTrackView& tracks = emObject.matchingTracks();

20

Link<CdfTrack> maxPtTrack = emObject.maxPtTrack();

double trackPt;

if (maxPtTrack.is_nonnull()) trackPt = maxPtTrack->pt();

}

}

9.5 Muons

A working version of the CdfMuon class is now available. Just like many of the other physics
objects, the CdfMuons live in a CdfMuonColl in the event record. However, it is better to make a
CdfMuonView, which behaves much like the CdfTrackView.

The CdfMuon itself holds links to one or more MuonStub objects, and to a CdfTrack. It also
carries information about the quality of each track-stub match, in the form of a MuonMatchData

object, and calorimeter and isolation quantities (currently un�lled). Here is an example of how
to access muons and some of this information; see the header �les and documentation in the
MuonObjects package for more details.

CdfMuonView_h muonView_hndl;

bool muonStatus = CdfMuonView::allMuons(muonView_hndl);

if (muonStatus == true) {

for (CdfMuonView::const_iterator muIter =

muonView_hndl->contents().begin();

muIter != muonView_hndl->contents().end(); ++muIter) {

const CdfMuon& muon = **muIter;

HepLorentzVector muP4 = muon.fourMomentum();

//Be sure to check that the muon has a stub in a particular

//system before trying to access data for that system!

//cmu can be replaced by cmp, cmx, cmu.

if (muon.hasCmu()) {

const MuonMatchData& cmuMatch = muon.cmu();

float drphi = cmuMatch.drphi();

const MuonStub* cmuStub = muon.stub(CdfMuon::CMU);

}

ConstLink<CdfTrack> track = muon.bestTrack();

double pT = track->pt();

}

}

10 Acknowledgements

Colleagues and friends at Michigan and Chicago have given helpful feedback, starting from the
beta version of this document. Many examples have been borrowed from David Dagenhart, Fedor

21

Ratnikov, Pierre Savard, Liz Sexton-Kennedy, and Rick Snider. Andy Beretvas, Frank Chlebana,
Isi Dunietz, Rob Harris, Stephen Haywood, Young-Kee Kim, Art Kreymer, Marjorie Shapiro, and
Tony Vaiciulis have also made useful comments and suggestions. The system described in this note
only works because of the years of e�ort by members of the o�ine group.

A Quick Guide to Commands

A.1 Preliminaries

source �cdfsoft/cdf2.cshrc Always do this �rst!
setenv USESHLIBS 1 Enable dynamic linking
setup cdfsoft2 [<release name>] Always do this second!

A.2 AC++ Commands

<program> <TCL file> Run AC++ program with command �le
help Print available help information
show Show status
show module List available modules
show path List available paths
module input <input module> Specify the input module
module output <output module> Specify the output module
module disable <module name> Disable a module
talk <module name> Enter the talk-to for a module
<parameter name> set <value> Syntax for setting parameters
filter <module name> <on/off/veto> Set �lter status
input file <file name> Specify input �le in input module
include dataset "<dataset ID>" run=<run#> Specify �les in data catalog
selectEvents set run=<run#> Specify run number in those �les
hideList set <process name> Create a hidden list
output create <stream name> <file name> Create an output stream
output path <stream name> <path name> De�ne path for output stream
path create <path name> <mod1> [<mod2> ...] Create a path
path enable <path name> Enable a path
begin [-nev <number of events>] Start analyzing events
cont [-nev <number of events>] Continue analyzing events
exit Exit AC++

A.3 Test Releases

newrel -t <base release> <new release name> Create test release
addpkg [-h] <package name> Add package to test release
cvs update [<package name>] Update development-based release
cvs update -D "<date>" -Pd [<package name>] Update rawhide-based release
gmake Complete build of test release
gmake nobin Build everything except executables
gmake bin Build only executables; don't recompile
gmake <package name>.all Do complete build of one package
gmake <package name>.<action> Partial build of one package

22

