
CDF/DOC/COMP UPG/PUBLIC/5543

R. St.Denis

January 16, 2001

CDF O�ine User's Guide

The Guide

CDF PHYSICS ANALYSIS PACKAGE

O�ine Version 3.11.0

Authors:

R. St.Denis

With contributions from1:

1A list of relevent web pages and CDF notes is found in Appendix A.

Contents

1 Introduction 1

2 Getting Started 3

3 User Methods 5

3.1 General Comments . 5

3.1.1 Name conventions . 5

3.1.2 Including CDF O�ine features in C++ code 6

3.1.3 AC++ Framework parameters . 7

3.1.4 Method return values . 7

3.1.5 Exchange of your own storable objects 7

3.2 Managers . 8

3.3 Records Available . 8

3.4 User Initialization . 9

3.5 Event analysis method . 10

3.6 User termination method . 11

3.7 Other User Methods . 12

3.7.1 Begin Run . 12

3.7.2 Other . 13

3.7.3 End Run . 14

3.7.4 Abort Job . 14

3.7.5 Clone . 15

i

3.8 The Module Constructor and Destructor . 16

3.8.1 Constructor . 16

3.8.2 Destructor . 17

4 TCL �les 18

4.1 General Information on TCL Files . 18

4.2 Declaration of Talk-to Parameters . 19

4.2.1 Declaration of the parameter: General type 19

4.2.2 De�nition of the Command to Set the Parameter 20

4.2.3 Declare to the Framework . 21

4.2.4 Description of the Parameter . 21

4.3 Input/Output . 22

4.3.1 CDF �le types . 22

4.3.2 Other CDF �le types . 22

4.3.3 Input datasets . 22

4.3.4 Run / event selection . 26

4.3.5 Listing Status of I/O . 27

4.3.6 Output �les . 27

4.4 AC++ Framework Commands . 31

4.4.1 Basic commands at the AC++ Prompt 31

4.4.2 events . 31

4.4.3 �lter . 32

4.4.4 show . 32

4.4.5 path . 32

4.4.6 module . 35

4.4.7 sequence . 35

ii

4.4.8 creator . 37

4.4.9 AC++ short commands . 37

4.4.10 Generic commands in any talk-to . 38

4.5 AC++ Required Module Commands . 38

4.5.1 Decompression of Data as they are Read (PuÆng): Pu�Module . . . 38

4.5.2 ErrorLoggerManager . 39

4.5.3 CalibrationManager . 41

4.5.4 GeometryManager . 42

4.5.5 SignalManager . 44

4.6 Histograms: . 45

4.7 Magnetic �eld . 45

4.8 Beam position for MCarlo . 45

4.9 AC++ Example . 47

5 Creating Histograms and Ntuples 50

5.1 Booking and Filling Histograms/Ntuples . 50

5.1.1 Book a 1�dimensional histogram . 51

5.1.2 Book a 2�dimensional histogram . 52

5.1.3 Book a Pro�le histogram . 53

5.1.4 Book an Ntuple . 53

5.1.5 De�ne the Columns of an Ntuple . 54

5.1.6 Clear the Ntuple . 55

5.1.7 Filling a Histogram: Accumulate Step 55

5.1.8 Filling an Ntuple: Capture Step . 56

5.1.9 Filling an Ntuple: Store Step . 56

5.1.10 Sample AC++ program to book and �ll histogram, Ntuple 57

iii

5.2 Histogram output � the TCL �le . 61

A Useful References 62

B \Getting Started" Failures 63

B.1 gmake Trouble . 63

B.2 PAW Trouble . 64

C Program Structure 67

D Full Example of an Analysis Module 69

D.1 Description of the Directory Structure . 69

D.1.1 The Head of the Release . 69

D.1.2 Packages . 70

D.2 The Header File . 70

D.3 The C++ File . 73

D.4 The Build File . 77

D.5 The Make�le . 79

E Advanced Features of the CalibrationManager Required Module 81

F Process Names 83

G Calibration Status List 88

H Advanced Parameters in Module Talk-To's 89

H.1 ENUM . 89

H.2 List of Parameters . 90

iv

Chapter 1

Introduction

The CDF Physics Analysis package AC++1 is intended to provide a C++ based framework
for physics analysis with access to the O�ine Code Repository. Although all CDF data
types can be processed with AC++ the program is designed primarily for analysis of
physics output �les (PADS), and (later) of DSTs and MINIs. These �les may be in the
EDM2, TRYBos3 or, for silicon, ASCII format. All event input/output is done by AC++
� the user has to provide only the name(s) of the input/output data set(s) and the rest is
provided for by the data handling module. AC++ also provides access to physical variables
(e.g., momentum, energy), so the user can write physics analysis programs without detailed
knowledge of the CDF data structure (EDM). An extensive set of utility routines (e.g.,
kinematics, event shape, secondary vertex �nding, b-tagging, etc.) is available as part of
the CDF O�ine package.

The basic program structure (Appendix C) is extremely simple. Three C++ methods
are normally supplied by the user: job initialization, event processing, and job termination
(see Ch. 3). Reconstructed objects (tracks, vertices, cal. objects) can be accessed
with C++ iterators4. For Monte Carlo generated events, the MC \truth" information
is accessible in the same way as reconstructed tracks and vertices (see Ch. ??).

The AC++ framework allow users to share their basic C++ methods which in fact
belong to a C++ class called a module. Since most analyses are driven by some number of
parameters, the AC++ framework allows for a uniform syntax to set parameters according
to a �le given as input to the program. The �le is written in TCL syntax and is referred
to as the TCL �le. Parameters speci�c to a module are referred to as \talk-to" parameters
and one can \talk-to" the module in order to change its behaviour. Any program (binary)
produced may be run and all commands in the TCL �le can be entered interactively.

Advanced features in the AC++ framework allow for modules to be run in any order
in a path, to allow for multiple analysis paths, to allow for analysis in a path to be stopped
by a �lter module, and to allow multiple streams of output to be assigned to di�erent
paths. Control of the order, path de�nitions and output streams is speci�ed in the TCL
�le.

1 http://www-cdf.fnal.gov/upgrades/computing/projects/framework/frame over/frame over.html
2 http://www-cdf.fnal.gov/upgrades/computing/projects/edm/edm.html
3 http://www-cdf.fnal.gov/upgrades/computing/projects/trybos/trybos.html
4An extension of the DO loop concept in FORTRAN.

1

This document describes all features of the CDF O�ine and the AC++ framework.
For �rst�time users, the important parts to read are Ch. 2 (getting started), Ch. 3 (user
routines), Ch. 4 (event input), Ch. ?? (loops over tracks), and Ch. ?? (track attributes).

This package and its documentation are taken from the ALEPH collaboration who
managed to make the ALPHA package a very easy to use and extremely well documented
package. We are indebted to their wisdom in having put the elements of a particle physics
analysis in such a clear and concise format.

Version 3.11.0 January 16, 2001 : First Release of Document with some tests done
on the veracity of Chapter 2.

2

Chapter 2

Getting Started

This chapter gives a brief introduction to getting started. If this does not work, have a
look at Appendix B for some hints.

Four �les must be provided to run an CDF o�ine job:

1. A header �le which contains the C++ declarations for the user methods (see Ch. 3).

2. A �le which contains the C++ code for the user methods (see Ch. 3).

3. A �le used to build the main executable consisting of the user code and other
necessary o�ine code (see Ch. 3).

4. A TCL �le which de�nes the input / output data �les, and allows the user to select
optional parameters (see Ch. 4).

The libraries needed to link the program are described in Appendix ??.

To start up log into fcdfsgi2.fnal.gov1

1. Set up the cdf environment with:

source ~cdfsoft/cdf2.cshrc

setup cdfsoft2 3.11.0

where 3.11.0 is the version of the o�ine package.

2. Create a subdirectory, which will be called ana here, in which to work and go to
that directory:

newrel -t 3.11.0 ana

cd ana

This uses Software Release Tools (SRT). For more hints and details on SRT see
Appendix ??. The speci�c name of the directory is arbitrary. This directory will be
the base directory, with a number of subdirectories that will be used by the job.

1See http://www-
cdf.fnal.gov/o�ine/runii/fcdfsgi2/ to get an account and/or contact cdf code management@fnal.gov to
get your own installation of the CDF O�ine software.

3

3. Set up the analysis enviroment

srt_setup -a

4. Add a package with a test program in it from which to build. For this guide the
following package is used is an example:

addpkg -h ExampleMyModule

5. Build the executable:

gmake

If this fails, you may have run out of disk space: see Appendix B.1 for hints on how
to determine this and what to do.

6. If it succeeded, run the job as follows:

rehash

cd ExampleMyModule

ExampleMyModule_test run.tcl

You will get a histogram of J/ 's that can be seen with PAW. Here is a typical session:

>paw

Calling 2000 version of paw-X11

**

* *

* W E L C O M E to P A W *

* *

* Version 2.11/13 6 December 1999 *

* *

**

Workstation type (?=HELP) <CR>=1 :

Version 1.26/04 of HIGZ started

*** Using default PAWLOGON file "/home/stdenis/.pawlogon.kumac"

the pro .pawlogon runs

pawlogon executed for module/hybrid tests

PAW > h/file 33 appexample.hbook

PAW > cd //mymodule

PAW > h/pl 100

PAW > h/pl 101

PAW > exit

� If you have trouble getting PAW to display, see Appendix B.

� Each module gets its own subdirectory in PAW: go to the subdirectory with your
modulename. Note that the case sensitivity is gone.

4

Chapter 3

User Methods

In this chapter, C++ methods which are intended to be modi�ed by the user are described.
These are the methods of the analysis module which is written to do some analysis job.
Since the module is in fact a C++ class, the task is to write methods that will belong to
this class.

Normally, only three methods have to be provided by the user: initialization
(beginJob), event analysis (event), and program termination (endJob). Full examples
for these three methods are in Appendix D. Other methods which may be modi�ed by
the user are also described in this chapter. Finally, a \constructor" and \destructor" can
be speci�ed for the module. Parameters that can be set by \talking-to" the module are
described in the header �le for the module and initialized in its constructor.

User methods should be provided as a plain C++ �le containing the code and a C++
header �le where the methods are declared. The description below gives the format of the
method as it is declared in the header �le and an example of an empty method is included
in each case.

For all user methods, default versions exist in the cdf o�ine libraries that are loaded
automatically if no user code is given.

To use the methods, they must be built together with the rest of the libraries in the
CDF o�ine. For this, a \Build" �le is required. An example of such a �le is found in
Appendix D.

3.1 General Comments

3.1.1 Name conventions

Classes All C++ classes symbols de�ned in AC++ start with an
uppercase letter and follow with uppercase letters and no
underscores. Example: MuonObject.

Private Data Members All private data members start with an underscore.
Example: debug.

5

Methods All methods start with a small letter with uppercase letters
demarking words Example: beginRun.

Further recommendations on coding guidelines may be found in:

http://cdfsga.fnal.gov/computing/coding guidelines/

.

3.1.2 Including CDF O�ine features in C++ code

In addition to methods, the O�ine package contains include �les which have to be included
at the beginning of user methods or functions. There are a number of such includes:

The Module's header �le

C header �les

Header Files from Other Users' Code (\Collaborating class headers")

For the module called MyModule in a package ExampleMyModule, these sets of
statements can be included as follows (see Appendix D for the description of a package
and the full listing):

//-----------------------

// This Class's Header --

//-----------------------

#include "ExampleMyModule/MyModule.hh"

//-------------

// C Headers --

//-------------

#include <cassert>

//---------------

// C++ Headers --

//---------------

//-------------------------------

// Collaborating Class Headers --

//-------------------------------

#include "HepTuple/HepHist1D.h"

#include "Edm/EventRecord.hh"

6

#include "Edm/ConstHandle.hh"

#include "StorableBanks/CMUO_StorableBank.hh"

Important! The following sequence of statements must be observed:

1. your module's class header

2. C headers

3. the collaborating Class headers

4. your executable C++ statements

If you don't do so, you may end up with specially unintelligible C++ compiler diagnostics...

3.1.3 AC++ Framework parameters

Some parameters about the run are accessible in the framework and are described in Ch. 4.

3.1.4 Method return values

All methods of a module return one of the two values: AppResult::OK or
AppResult::ERROR and are therefore declared to have return values of type AppResult.

Throughout the sections it will be noted that each method also contains the C++
virtual quali�er. The reason for this is a detail of the implementation of AC++ and is
described in1. This is the mechanism by which the AC++ Framework ensures that every
module has default methods and hence users are not required to write methods unless
they use them.

3.1.5 Exchange of your own storable objects

Any information you wish to store or communicate to another module, must be put in a
storable object. A storable object is something that must have method de�ned for how
the output is to be formatted. These objects can be attached to and fetched from the
event. The reason that they must be storable is that it is assumed that if you should
choose to produce some output, it should be possible for that output to go to a �le or to
be communicated to another module. In this way, modules can access objects whether
those objects come directly on input or are created by other modules.

1 http://www-cdf.fnal.gov/upgrades/computing/projects/framework/frame over/frame over.html

7

If you need to create your own storable objects, you should follow the instructions
in ??.

There is an exception to this for the \memory database" and advice on when and how
to use this is given in section ??.

3.2 Managers

A user program needs a variety of manager modules, usually just called \managers", to
provide the following services:

� Opening the CDF data base and reading constants and calibrations

� Updating of constants for each run

� CDF Geometry

� Error message control

� Histograms

� Event compression and decompression

A complete description of the managers is found in 4.5. For getting started and most
applications, the default behaviour of the managers is suÆcient. Managers for the most
part should only keep the areas for which they are responsible running smoothly, and
anticipate the needs without the user noticing and without need for frequent interaction.

3.3 Records Available

The data are stored in objects2. There are three objects that can be accessed with various
data contents3:

AbsEvent* theJobRecord=AbsEvent::initJobRecord(); Information available
from the time the program starts up.

AbsEvent* theRunRecord=AbsEvent::theRunRecord(); Information pertinent
to an entire run such as calibrations and other settings

AbsEvent* theEvent=AbsEvent::theEvent(); The event record containing raw
data hits, reconstructed objects, etc.

2For FORTRAN users:this is analogous to the way that they were stored in BOS banks or common
blocks.

3FORTRAN users:think common block.

8

Information from these records is available only after the various times indicated by
when they are created. For example, when one is analyzing events, it is possible to access
the beginJob, beginRun and event information.

Important: It is essential to check that a record's pointer is not zero before trying
to use it. Otherwise the program will core dump. Therefore, if you try to get the event
pointer, check it as follows:

AbsEvent* theEvent=AbsEvent::theEvent();

if(theEvent!=0){

// .. ok to use

}else{

// .. signal and error and return

}

What to do with the event and how to signal errors is described later.

Calibration information is handled di�erently and this is described in ??.

3.4 User Initialization

virtual AppResult beginJob(AbsEvent* theJobRecord)

beginJob is called once at the startup of the program.

Method arguments: AbsEvent* theJobRecord The record containing job information.

Default no action: return AppResult::OK;.

This method should be used to book histograms and to perform other user
initializations.

All standard initialization work is performed automatically in the AC++ framework
before the beginJob method is called. The standard AC++ initialization includes:

� Initialization of HBOOK (default : 100,000 words working space) through the
HepHbookManager (See 4.6 for a description of histogram handling).

� Reading the user's TCL �le (See Ch. 4 for a description of TCL �les)

� Initialization of AC++

Unlike in HBOOK, there is no need to be concerned about memory allocation.

Records Available:

9

AbsEvent::initJobRecord() The beginJob Record: same as the argument,
theJobRecord.

Format in .cc �le Assume that the module class is called MyModule, then the blank
method looks like:

AppResult MyModule::beginJob(AbsEvent* theJobRecord)}{

// Put code here

// ..

// ..

return AppResult::OK;

}

3.5 Event analysis method

virtual AppResult event(AbsEvent* anEvent)

event is called once for each event.

Method arguments AbsEvent* anEvent The record containing event information.

Default no action: return AppResult::OK;.

The current event is read in, unpacked, and ready to be analyzed when event is called.
This is the heart of analysis.

This is a pointer to the memory location where the event data are stored. The method
arguments must be given even if they are not explicitly used. Typically they are used to
access various bits of information.

Records Available:

AbsEvent::initJobRecord() The beginJob Record.

AbsEvent::theRunRecord() The beginRun Record.

AbsEvent::theEvent() The event Record: same as the argument, anEvent.

Format in .cc �le Assume that the module class is called MyModule, then the blank
method looks like:

AppResult MyModule::event(AbsEvent* theEvent)}{

// Put code here

// ..

10

// ..

return AppResult::OK;

}

3.6 User termination method

virtual AppResult endJob(AbsEvent* endJob)

endJob is called once at the end of execution.

Method arguments AbsEvent* endJob The record containing information at the job's
end

Default no action: return AppResult::OK;.

This method can be used for anything which needs to be done at the end of a job:
histogram manipulations, freeing memory and closing �les. Histogram output is done
automatically by the AC++ HepHbookManager described in 4.6.

endJob must never be called directly. For program termination, notify the framework
by using the framework()->requestStop() method. An example of ths usage is:

if(tooBadForWords){

framework()->requestStop();

return AppResult::ERROR;

}

Upon return, AC++ will return to the ANA >> prompt where exit can be typed.

Records Available:

AbsEvent::initJobRecord() The beginJob Record.

AbsEvent::theRunRecord() The beginRun Record.

AbsEvent::theJobRecord() The record at endjob: same as the endJob argument.

Format in .cc �le Assume that the module class is called MyModule, then the blank
method looks like:

AppResult MyModule::endJob(AbsEvent* theJobRecord)}{

// Put code here

// ..

// ..

return AppResult::OK;

}

11

3.7 Other User Methods

The methods in this section normally do not have to be modi�ed. As mentioned above,
default versions of all user methods are loaded if no new versions are provided.

3.7.1 Begin Run

virtual AppResult beginRun(AbsEvent* beginRun)

beginRun is called for each run at its start.

Method arguments AbsEvent* beginRun The record containing begin run information
OR the event record if the endRun was called because of a change
in run number.

Default no action: return AppResult::OK;.

This method is called once a new run is encountered on the event input �le, i.e.,

� either a run record is read on the input �le

� or the run number in an event record has changed

� or both conditions are ful�lled.

beginRun may be used to initialize run�dependent data or to print run statistics.

Input arguments

AbsEvent* anEvent This is the begin run record.

Default no action: return AppResult::OK;.

Records Available:

AbsEvent::initJobRecord() The beginJob Record.

AbsEvent::theRunRecord() The beginRun Record, same as beginRun argument if
there was a true beginRun event; otherwise this is null.

Format in .cc �le Assume that the module class is called MyModule, then the blank
method looks like:

12

AppResult MyModule::beginRun(AbsEvent* theRunRecord)}{

// Put code here

// ..

// ..

return AppResult::OK;

}

3.7.2 Other

virtual AppResult other(AbsEvent* anEvent)

if it isn't beginRun, event or endRun, it's other.

Method arguments AbsEvent* anEvent The record containing event information.

Default no action: return AppResult::OK;.

This method is called for records that are not beginRun, endRun or events. Typically
these are slow control records.

Input arguments

AbsEvent* anEvent This is the record just read in.

Default no action: return AppResult::OK;.

Records Available:

AbsEvent::initJobRecord() The beginJob Record.

AbsEvent::theRunRecord() The beginRun Record, if there was a true beginRun
event; otherwise this is null.

AbsEvent::theEvent() The event Record: same as the argument, anEvent.

Format in .cc �le Assume that the module class is called MyModule, then the blank
method looks like:

AppResult MyModule::other(AbsEvent* anEvent)}{

// Put code here

// ..

// ..

return AppResult::OK;

}

13

3.7.3 End Run

virtual AppResult endRun(AbsEvent* anEvent)

endRun is called at the end of each run.

Method arguments AbsEvent* anEvent The record containing end run information
OR the event record if the endRun was called because of a change
in run number.

Return value return AppResult::OK;.

This method is called when an end run record is encountered or a run number changes.
This may be used:

� to compute and store run statistics

� reset counters for the next run

� reset histograms

Records Available:

AbsEvent::initJobRecord() The beginJob Record.

AbsEvent::theRunRecord() The beginRun Record, if there was a true beginRun
event; otherwise this is null.

AbsEvent::theEvent() The event Record: same as the argument, anEvent.

Format in .cc �le Assume that the module class is called MyModule, then the blank
method looks like:

AppResult MyModule::endRun(AbsEvent* theEvent)}{

// Put code here

// ..

// ..

return AppResult::OK;

}

3.7.4 Abort Job

virtual AppResult abortJob(AbsEvent* anEvent)

abortJob is called when a fatal signal is detected.

14

Method arguments AbsEvent* anEvent Currently set to null.

Default no action: return AppResult::OK;.

This method is called when a fatal signal like SEGV occurs. This may be used to:

� free allocated memory

� to compute statistics if you can!

Records Available:

AbsEvent::initJobRecord() The beginJob Record.

AbsEvent::theRunRecord() The beginRun Record, if there was a true beginRun
event; otherwise this is null.

AbsEvent::theEvent() The event Record: same as the argument, anEvent.

Format in .cc �le Assume that the module class is called MyModule, then the blank
method looks like:

AppResult MyModule::abortJob(AbsEvent* anEvent)}{

// Put code here

// ..

// ..

return AppResult::OK;

}

3.7.5 Clone

virtual AppModule* clone(const char* cloneName);

bring in the clones

Method arguments const char* cloneName The name of the clone. When a module is
being used in multiple paths a new copy of the module, a clone, is
made. At the time this is done, the clone is given a name. There
may be multiple paths and hence multiple clones.

Default return a pointer to the new copy of the cloned module.

Format in .cc �le Assume that the module class is called MyModule, then the full
method looks like:

15

AppModule*

MyModule::clone(const char* cloneName)

{

return new MyModule(cloneName,"this module is a clone MyModule");

}

The usage of clones within the AC++ enviroment is described in Appendix ??.

3.8 The Module Constructor and Destructor

An AC++ module is an object and hence has a constructor and destructor. The
constructor needs to be explicitly speci�ed when one wishes to allow parameters to be
modi�ed by \talking-to" the module. The destructor needs to be speci�ed when one
allocates memory for an object using the C++ \new" command and does not attach the
command to an event.

3.8.1 Constructor

MyModule::MyModule(const char* theName, const char* theDescription)

Arguments: theName String name of the module. This is the
string with which it is referred in AC++
in the talk-to path and other commands.

theDescription String description of the module which
shows up when one uses the AC++ show
command.

Default: No action.

The values for theName and theDescription should be included in the header �le
declaration of the constructor for the module:

public:

MyModule(const char* theName="MyModule",

const char* theDescription="My First AC++ Module");

Format in .cc �le Assume that the module class is called MyModule, then an empty
constructor looks like:

MyModule::MyModule(const char* theName, const char* theDescription){

// Put code here

// ..

16

// ..

}

3.8.2 Destructor

virtual MyModule::~MyModule()

Arguments: NONE

Default: No action.

The destructor should be used to free all memory that was allocated to objects using
a new command provided that the objects were not subsequently attached to the event.

Format in .cc �le Assume that the module class is called MyModule, then an empty
destructor looks like:

MyModule::~MyModule

(){

// Put code here

// ..

// ..

}

17

Chapter 4

TCL �les

In this chapter, the TCL �les are described. The TCL �le is used to control input
and output for AC++, and is used to control many AC++ features as well as to set
the parameters of the various modules linked into AC++. For completeness, all AC++
commands are listed in this chapter; some are described in more detail in other chapters.
Also, as more modules are added the details of the meanings of the TCL commands for
those modules must be found in the documentation for that module. Major modules are
documented in this guide. The user-supplied modules must all be speci�ed in the \Build"
procedures: see Appendix D.4 for an example Build �le.

4.1 General Information on TCL Files

The following rules should be followed for all entries in the TCL �le.

1. A hash symbol # indicates the beginning of a comment.

2. TCL commands can be given in any order.

3. $env(EVAR) will substitute the UNIX environment variable, EVAR, into the TCL
�le.

4. TCL commands are case-sensitive.

TCL commands may also be used to enter your own parameters into the program.
This is done through the \talk-to" for your module. For example to modify parameters
in the module, \ExampleTrackAnalysis", type:

talk ExampleTrackAnalysis

ptCut set 0.5

exit

where \ptCut" is some name of the parameter. For boolean parameters, value is \true"
or \false". \t" or \f" is suÆcient:

18

talk ExampleTrackAnalysis

verbose set t

exit

will set \verbose" to true.

In the C++ code each parameter is an object with a value() method and is accessed
as follows:

if (pt >_ptCut.value()){

processFurther();

}

where it is assumed that the track pt has been determined somewhere in the code above
where this cut is applied.

Note that the naming convention implies that these cuts are private members of the
module's class. This must always be the case as cuts visible between modules will lead to
a linking nightmare. If cuts must be passed between modules, they should communicate
via a Storable Object as described in ??.

Module parameters are are declared in C++ code as described in 4.2.

4.2 Declaration of Talk-to Parameters

De�ning the parameters which can be modi�ed by \talking to" a module requires:

� Declaration of the parameter as a private member of the module class in the module's
header �le.

� De�nition of the TCL command by which the parameter will be described and the
default value in the module's constructor.

� Declaration of the parameter to the AC++ framework in the module's constructor
by attaching it to a menu.

� Providing a \Help" description of the parameter in the module's constructor.

4.2.1 Declaration of the parameter: General type

AbsParmGeneral< type > parname

This is the general declaration of any kind of parameter and must be made in the
header �le of the class. The type is the kind of parameter. Some commone examples of

19

usage are:1

integer: AbsParmGeneral<int> version;
boolean: AbsParmGeneral<bool> useCorrection;
oat: AbsParmGeneral<oat> ptCut;
double: AbsParmGeneral<double> mass;
string: AbsParmGeneral<string> particleName;

More sophisticated parameter types such as lists, and enum plus their declarations and
usage examples are given in Appendix H.

In addition to being declared in the header �le, the parameter:

� Must have the de�nition of the command to set its value given in the constructor
of the module as described in 4.2.2. Additionally default, minimum and maximum
values may be speci�ed.

� Must have the parameter declared to the framework (added to a menu).

� May have a helpful description added as described in 4.2.4.

4.2.2 De�nition of the Command to Set the Parameter

parname(\TCLcommand", this, par-default, par-min, par-max)

De�ne the name, default value, min value, and max value.

Arguments: TCLcommand Used to refer to in TCL �le where the
syntax is TCLcommand set < value >.

this C++ synatax refers to the module

par-default default value of parameter (optional).

par-min default value of parameter (optional).

par-max default value of parameter (optional).

Location: In the constructor of the module

Example: _ptCut("ptCut", this, 0.0, 0.0, 2000.0)

Prerequisite: The parameter parname must be declared in the header �le as described
in 4.2.1.

In addition the parameter:

1The syntax is precisely as given and is that of a templated C++ class. AbsParmGeneral objects have
a value (as was shown), a keyword in TCL, such as ptCut, and a text description that appears in the
menu. The speci�c kind of parameter is just passed as an argument between the < and > signs.

20

� Must have the parameter declared to the framework (added to a menu) as described
in 4.2.3.

� May have a helpful description added ad described in 4.2.4.

4.2.3 Declare to the Framework

commands()->append(& parname);

Arguments: & parname Reference to the parameter

Location: In the constructor or beginJob() methods.

Example: command()->append(&_ptCut);

Prerequisites

� The parameter parname must be declared in the header �le as described in 4.2.1.

� The parameter parname must have the de�nition of the command to set its value
given in the constructor of the module as described in 4.2.2. Additionally default,
minimum and maximum values may be speci�ed.

At any time the parameter may have a helpful description added as described in 4.2.4.

4.2.4 Description of the Parameter

parname.addDescription(description)

Arguments: description String describing the parameter, gets
printed when \help" is give in the TCL
�le or in the talk-to for that module.

Location: In the beginJob method.

Example: _ptCut.addDescription("tSave event if there exists a track with pT
above this value.");

Prerequisites

� The parameter parname must be declared in the header �le as described in 4.2.1.

� The parameter parname must have the de�nition of the command to set its value
given in the constructor of the module as described in 4.2.2. Additionally default,
minimum and maximum values may be speci�ed.

� The parameter must be declared to the framework as described in 4.2.3

21

4.3 Input/Output

4.3.1 CDF �le types

There are several CDF data �le types:

TRYBos input/output (RAW data are written in this format)

EDM or ROOT machine�independent input/output (all oÆcial CDF datasets
other than RAW data)

SVX Silicon Detector ASCII �les from the test stands or SiDet

The CDF �le type for data cannot be recognized automatically. The �le type must be
chosen by the choice of input module. Currently the input modules are:

YBOSInput for TRYBos �les

DHInput for ROOT �les and tapes

TsAsciiInput for SVX teststand Ascii �les

4.3.2 Other CDF �le types

TCL TCL�les (e.g., TCL commands)

HIS histogram �les (machine�dependent HBOOK format)

Examples: On fcdfsgi2, the environment variable VAL DATA DIR points to some example
input �les:

YBOSInput b4_peds_sidet_100ev.ybs

DHInput calor_testfile_CalData.root

TsAsciiInput laser2961.svx

4.3.3 Input datasets

Input data is speci�ed by the talk-to parameters in the DHInput module. After typing

module talk DHInput

22

into the TCL �le (or at the AC++ prompt) one then describes the input according to the
following2:

Format include `type-designator-name' `name' `run-restriction' ...

The `type-designator-name' is one of the following:

� dataset

� datasets

� �leset

� �lesets

� �le

� �les

A dataset is related to a collection of tapes such as \MDC-2 B Samples". A �leset is a
partition of a tape on which �les reside. The actual location of the tape is transparent to
the user when on fcdfsgi2: the �les are staged automatically if needed. When tapes and
staging are not available, then the type-designator-name is just �le and one con�gures
the TCL to read:

talk DHInput

include file $env(VAL DATA DIR)/calor testfile CalData.root

exit

As mentioned in 4.3.2, on the CDF central computers, the UNIX environment variable
VAL DATA DIR points to a directory of input �les useful for testing and this can be
interpreted in the TCL �le.

The run-restriction is optional and has any of the following formats:

� run=run-number

� run> run-number

� run< run-number

� run<= run-number

� run>= run-number

2One may use the word input instead of include for �les. It works but is discouraged.

23

where the run-number may be either in decimal or hexadecimal format. The hexidecimal
format is indicated by preceding the hexadecimal number by 0x.

Any number of `include' commands may be given � the data are read in the order
the cards are given if the �les are on disk; otherwise, the data are read in so that access
speed to the tapedrive is optimized and staging of available tapes is done in parallel with
analysis.

Example 1

module talk DHInput

include dataset "RAW generic physics trigger" run=1234

quit

will process all �les of run 1234 beloing to the \RAW generic physics trigger" dataset.

Example 2

module talk DHInput

include dataset "RAW generic physics trigger" run>=0xabcdb run<=0xabcde

quit

will process all �les of runs 0xabcdb, 0xabcdc, 0xabcdd belonging to the dataset \RAW
generic physics trigger".

Example 3

module talk DHInput

include files /cdf/data*/*/ab??????.????cdef

quit

will process all �les corresponding to the pattern. The synatax is understood that *"
indicates a wildcard that may be substituted with a string of any length and \???"
indicates a pattern where exactly 3 character place holders are kept, but any character
my appear in any of the three places.

The current list of input �les may be seen by typing

talk DHInput

show

exit

Finer speci�cation of speci�c events within runs as well as additional ways to specify
runs are given in 4.3.4.

24

How to specify \tapes"

talk DHInput

include fileset CA3000.0

exit

Here, CA3000.0 is the �leset name. It corresponds to partition 0 on tape CA3000 name
but you need not know that of course: all tape handling is automatically done by the data
handling system.

The corresponding tape will not be read directly by AC++: the system will �rst stage
the speci�ed �le (or several �les in one go) on disk; then AC++ will read this disk �le.

The �leset will have a number of �les, for example:

� aa01933f.0001phys

� aa01933f.0004phys

� aa01933f.0008phys

� aa01933f.0012phys

could be some �les in the �leset. The number before the decimal point is the run number
in hex and the number after is the run section number where a run section has about 2000
events and represents about 30s of data taking. In this case one could expect about 6000
events on the �rst �le since it contains three partitions. Each �le should be around 1 G
so that one does not have trouble on �lesystems that only work with up to 32 bits.

To �nd the datasets and �lesets of interest, use the Database Browser 3 as described
in Chapter ??. There one can use hyperlinks to go from a dataset to a �leset to the �les
to the run/runsection.

stage list: query on staged datasets on CDF central computers

An interactive facilty called stage is available on the central CDF computers to know
which �lesets and datasets are presently staged. This may be very useful during testing,
to use already staged tapes in order to avoid the staging time which may be very long.

stage list -s List all disk resident �lesets

stage list -s `�leset name' Lists the �leset if it is on disk

stage list -f List all disk resident �les

3 http://www-cdf.fnal.gov/internal/upgrades/computing/database/browser/browserguide.htm

25

stage list -s `�le name' Lists the �le if it is on disk

stage list -F Lists all the �le systems (ie. disks) available and shows space
used

stage list -F `�les system' Lists the space for the �lesystem (ie. disk) if it exists

There are a number of other actions for which the stage command allows; however, most
are handled by the input and output modules. stage -h lists the commands available.

Examples: In the database browser(see section ?? for instructions), you have determined
that the �lesets associated with your dataset include the �leset CA3099.0. You want to
know if it is on disk so you type

stage list -s CA3099.0

and you get:

152 Filesets in edition 280:

Note that you did not get your �leset listed so in fact it is not there. But you do see that
there are 152 �lesets out there, so you want to know what is there. You type:

stage list -s

and you get

152 Filesets in edition 280:

CA3086.3 (0.0 GBytes, 0 files) cached on disk (1 reservations)

CA3086.2 (0.0 GBytes, 0 files) cached on disk (0 reservations)

CA3086.1 (0.0 GBytes, 0 files) cached on disk (0 reservations)

...

There are 152 lines (only 3 shown here). You wonder what these are so you can go to the
database browser and type in one of these �lesets to �nd out what dataset it belongs to.
You �nd that CA3086.3 belongs to mdc2tr.

4.3.4 Run / event selection

Speci�c run selection may be speci�ed in the include command as described in 4.3.3. In
addition, the following TCL commands may be used to select particular runs or trigger
numbers for analysis. Trigger numbers are set to zero at the start of a run and increase
monotonically. The events may also be selected by run section (25 seconds worth of data,
about 2000 events) and run number.

26

RunsTrigs set 100:105 108 110:114 Select RUNs 100, 101, 102, 103, 104, 105, 108,
110, 111, 112, 113, 114.

RunsTrigs set 100(1111:1112) Select trigger 1111 on the input �le.

RunsTrigs exclude 1 5 7 11 �99 Ignore runs 1,5,7,11,12,13,14,...,99

Notes:

� The RunsTrigs command selects only those events which are sent for the processing
by the AC++ modules. All events will be read in any case. So one can reject events
from processing, but not from input.

� The syntax of R(T) where R=run and T=trigger follows the rule that R(*) is all
triggers and is the same as R:

Short format Full equivalent

R1:R2(T) R1(*):R2(T)
R1(T):R2 R1(T):R2(*)
R(T1:T2) R(T1):R(T2)
R1:R2 R1(*):R2(*)
R R(*):R(*)

4.3.5 Listing Status of I/O

The command

module talk DHInput

show include

exit

will show the �les and �lesets that are to be analyzed.

module talk DHInput

RunsTrigs list

exit

will show the selections speci�ed by the RunsTrigs command.

4.3.6 Output �les

Event output is controlled by the DHOutput module. The data set name and options are
given in the talk-to of DHOutput. The objects written are controlled by ??. To output
data,

27

� One must de�ne an output stream by attaching a �le to a stream.

� One must specify the path of analysis to attach to the stream.

� One may set optional parameters on the output stream.

Create Stream: output create `stream name' 'destination'

stream name same as on de�ned in output stream
cards;

destination a �le name for output or the dataset
ID. If a \/" or a \." is in the name,
it is assumed to be a �le.

Attach Path to Stream: output path `stream name' `path name' `parameter2' ...

stream name same as on de�ned in output stream;

path name path designating the
analysis modules to be called before
writing. The default path is AllPath.
Paths are described in 4.4.5.

Set Stream parameters: output setstream `stream name' `parameter1' `parameter2'
...

stream name same as on de�ned in output
stream cards; see examples of
how to de�ne a path in. A
*" can be used to address all
streams.

parameter is either a single keyword or
expression keyword=value.

parameters: (optional)

list print out current setting for the
output stream

dfc use default Data File Catalog to
�ll �le records. Details on how
to set this up may be found in
??.

nodfc Do not �ll any Data File
Catalog �le record.

anysize No restrictions on size of output
�le

savecatalog Write File Content Catalog into
the �le. Further details on
the File Content Catalog are
available 4.

4 http://rutpc7.fnal.gov/ratnikov/Docs/DHIOModuleReference.htm

28

pathname=(char) `path' Specify the pathname
of directory where the data �les
are written.

�le=(char) `name' Write to the named �le or
its successors. If a �le is
larger than 1GB new �les are
opened and the original is
closed. Sequential numbers are
appeneded to `name' to create
this set of �les (nb. �leset).
The `anysize' option deactivites
this.

dfc=(char) `name' Specify Data File Catalog
named `name' keeping track of
the output data

ush=(int) `size' Specify how often the data
are to be ushed to disk as
determined by the `size' in kB.

size=(int) `size' Specify the maximum size of an
output �le in Kb.
Files are closed and successors
are written when this size is
reached. Each successor has a
sequential number assigned the
end of the �lename.

skiptill=(int) `run/section' Ignore data with `run`/`section`
less than speci�ed: this skips
over these records whereas the
Run / event selection 4.3.4
commands read the records and
only provide the selected events
for processing. This is useful for
crash recovery.

Examples:

Example 1: Output to a File

output path mystream mypath

output create mystream mydirectory/myfile

Stream with name mystream is connected to AC++ data path mypath (paths are described
in 4.4.5, streams are described in 4.3.6).

Notes:

29

� The slash before my�le is important. Use \./< myfile >" to write a �le my�le into
current directory.

� The File Content Catalog will not be written to the data �le.

� No communication with DFC or DIM is necessary

� This is safe to use without any tape staging capabilities: only �les.

Example 2: Output to a File with customization of parameters

output path mystream mypath

output create mystream mydirectory/myfile

output setstream mystream nodfc anysize savecatalog list

Output stream properties are speci�ed explicitly. Stream with name mystream is
connected to AC++ data path mypath. Output �le will be mydirectory/my�le without
any restrictions on its size.

Notes:

� The slash before my�le is important. Use \./< myfile >" to write a �le my�le into
current directory.

� The File Content Catalog will be also written to the data �le.

� No communication with DFC or DIM is necessary.

Multiple streams may be de�ned and attached to di�erent �les and di�erent analysis
paths.

Example 3: Output to a Dataset

output path mystream mypath

output create mystream mydataset

output setstream mystream dfc=production_file_catalog size=1000000

output setstream mystream pathname=mydirectory list

Almost certainly one expected this example to describe \output to a tape" and this is
essentially what this is. The point is that a dataset is stored on a tape { but the boundaries
of the tapes should not have to concern you. So you de�ne a dataset in the database using
the tools described in ?? and then here you can write to this.

For this example, a stream with name mystream is connected to AC++ data path
mypath. Data will be assigned to dataset mydataset and corresponding output �le names
will be generated. Output �les will be collected in directory mydirectory, �les will be
closed when size exceeds 1Gb. FILE record will be added to the DFC speci�ed by the
name production �le catalog in the iomap.txt �le and �les will be sent for archiving. The
current setup will be printed out.

30

unpu�Events (default = false) Data compression

Data are written in compressed format and need to be \pu�ed" as they are read in. The
command

unpu�Events set 1 suppresses the (de)compression.

More detailed control of compression (\puÆng") is available from the requred module
\Pu�Module" described in 4.5.1

4.4 AC++ Framework Commands

Commands in AC++ are issued at the AC++> prompt or within the \talk-to" for an
individual module. In addition to the general framework commands, all modules share
some identical talk-to commands. The AC++ commands are discussed here and the
generic commands applicable to any module are treated in Section 4.4.10.

4.4.1 Basic commands at the AC++ Prompt

A number of commands may be included in the TCL �le that directly control the job.
The AC++ manual 5 describes the framework in detail.

4.4.2 events

Command used to control the looping over events

event begin [-nev <n>] Begin processing

event continue [-nev <n>] Continue processing

Where begin resets the current input module to start a new event processing run,
whereas continue continues the current sequence (presumably because it was terminated
prematurely by the optional quali�er -nev which speci�es a number of events). The
continue command acts identically to the begin command if no prior begin command had
been issued.

Further control over the events: skipping events, runs etc, is available in the talk-to of
the DHInputModule as described in 4.3.4.

5 http://www-cdf.fnal.gov/upgrades/computing/projects/framework/frame over/frame over.html

31

4.4.3 �lter

Modify the mask used to interpret �lter decisions.

filter [-path <pathName>] <moduleName> on/o�/veto

This command sets the mask for a particular �lter in a particular path. If a path
is not speci�ed the default, AllPath is assumed. `On' is the default behavior if this
command is given to the Framework, and means the �lter's decision will be used to
prematurely terminate path execution. `O�' means the �lter's decision will be ignored
by the Framework in deciding how to execute the path (or sequence). Veto means the
logical NOT of the �lter's decision will be used.

4.4.4 show

Display the available modules, paths, and processing time for each module. This also
indicates the active modules. Example output from a `show' command is given in 4.9.

4.4.5 path

Command used to create, modify and control paths. A complete description of paths
is available in6. A path de�nes the order in which modules are called. Modules not in
the path are not called for each event but their begin and end run and job methods are
invoked. To prevent this, the modules must be also be disabled.

path help Show help for this command

path list List current path(s)

path create <PathName> <mod1> <seq1> ... Create a new path

path append <PathName> <mod1> <seq1> ... Append
mod(s)/seq(s) to PathName at the
end of the path

path delete <PathName> Delete a path

path disable <PathName> Disable path(s)

path enable <PathName> Enable path(s)

path insert <PathName> <mod1> <seq1> ... Insert mod(s)/seq(s) into
PathName at start of path

6 http://www-cdf.fnal.gov/upgrades/computing/projects/framework/frame over/frame over.html

32

path remove <PathName> <mod1> <seq1> ... Remove mod(s)/seq(s) from
PathName

By default, modules are placed into the path \AllPath" which contains all modules.

Here are some examples taken in the context of the ExampleMyModule test program:

AC++> path list

**** Listing of all available paths ****

* = Enabled; ! = Active

Default (all modules) path AllPath

Filter? Mask nQuery nPassed

* CDF required manager sequence ManagerSequence

* no on 0 0 ErrorLoggerManager

* no on 0 0 PuffModule

* no on 0 0 CalibrationManager

* no on 0 0 GeometryManager

* no on 0 0 SignalManager

* yes on 0 0 HepHbookManager

* yes on 0 0 MyModule

* yes on 0 0 ExampleTrackAnalysis

One sees that AllPath contains the modules but is disabled: there is no *" in the �rst
column. Now create a new path, put the CalibrationManager and MyModule into the
path, and show the result:

AC++> path create ShortPath

AC++> path append ShortPath CalibrationManager MyModule

AC++> path list

**** Listing of all available paths ****

* = Enabled; ! = Active

Default (all modules) path AllPath

Filter? Mask nQuery nPassed

33

* CDF required manager sequence ManagerSequence

* no on 0 0 ErrorLoggerManager

* no on 0 0 PuffModule

* no on 0 0 CalibrationManager

* no on 0 0 GeometryManager

* no on 0 0 SignalManager

* yes on 0 0 HepHbookManager

* yes on 0 0 MyModule

* yes on 0 0 ExampleTrackAnalysis

* ShortPath

Filter? Mask nQuery nPassed

* no on 0 0 CalibrationManager

* yes on 0 0 MyModule

The path \ShortPath" has been created and is enabled. More than one path can be
enabled. This can be demonstrated by enabling AllPath as well:

AC++> path enable AllPath

AC++> path list

**** Listing of all available paths ****

* = Enabled; ! = Active

* Default (all modules) path AllPath

Filter? Mask nQuery nPassed

* CDF required manager sequence ManagerSequence

* no on 0 0 ErrorLoggerManager

* no on 0 0 PuffModule

* no on 0 0 CalibrationManager

* no on 0 0 GeometryManager

* no on 0 0 SignalManager

* yes on 0 0 HepHbookManager

* yes on 0 0 MyModule

* yes on 0 0 ExampleTrackAnalysis

* ShortPath

Filter? Mask nQuery nPassed

* no on 0 0 CalibrationManager

* yes on 0 0 MyModule

34

4.4.6 module

Command used to control and specify modules

mod help Show help for the module command

mod disable <ModName>... Disable module(s)

mod enable <ModName>... Enable module(s)

mod in(put) <ModName>... Specify the Input Module

mod list List current modules

mod out(put) <ModName>... Specify the Output Module

mod talk(To) <ModName>... Talk to module

mod action(s) enable/disable <ModName>/all Enable/Disable actions

mod clone <ModName> <new-ModName> Clone a module

4.4.7 sequence

Command used to create, modify and control sequences. A sequence is a set of modules
that should be manipulated together. An example is the clustering and tracking of the
silicon could be put into a sequence. Another example is the CDF required modules
described in 4.5. These can then be added and removed from a path as a set without
specifying each individual module. Sequences can also contain other sequences.

seq append <SeqName> <mod1> <seq1> ... Append mod(s)/seq(s) to SeqName
at the end of the sequence

seq create <SeqName> <mod1> <seq1> ... Create a new sequence

seq delete <SeqName> Delete a sequence

seq disable <SeqName> Disable sequence(s)

seq enable <SeqName> Enable sequence(s)

seq help Show help for this command

seq insert <SeqName> <mod1> <seq1> ... Insert mod(s)/seq(s) into SeqName
at the start of the sequence

seq list List current sequence(s)

seq remove <SeqName> <mod1> <seq1> ... Remove mod(s)/seq(s) from
SeqName

35

Here is an example of sequence manipulation using ExampleMyModule test:

AC++> sequence list

**** Listing of all available sequences ****

* = Enabled; ! = Active

* CDF required manager sequence ManagerSequence

* no on 0 0 ErrorLoggerManager

* no on 0 0 PuffModule

* no on 0 0 CalibrationManager

* no on 0 0 GeometryManager

* no on 0 0 SignalManager

AC++> sequence create fudge

AC++> sequence append fudge PuffModule GeometryManager

AC++> sequence list

**** Listing of all available sequences ****

* = Enabled; ! = Active

* CDF required manager sequence ManagerSequence

* no on 0 0 ErrorLoggerManager

* no on 0 0 PuffModule

* no on 0 0 CalibrationManager

* no on 0 0 GeometryManager

* no on 0 0 SignalManager

* fudge

* no on 0 0 PuffModule

* no on 0 0 GeometryManager

AC++> sequence remove fudge GeometryManager

AC++> sequence list

**** Listing of all available sequences ****

* = Enabled; ! = Active

* CDF required manager sequence ManagerSequence

* no on 0 0 ErrorLoggerManager

36

* no on 0 0 PuffModule

* no on 0 0 CalibrationManager

* no on 0 0 GeometryManager

* no on 0 0 SignalManager

* fudge

* no on 0 0 PuffModule

AC++> sequence insert fudge SignalManager

AC++> sequence list

**** Listing of all available sequences ****

* = Enabled; ! = Active

* CDF required manager sequence ManagerSequence

* no on 0 0 ErrorLoggerManager

* no on 0 0 PuffModule

* no on 0 0 CalibrationManager

* no on 0 0 GeometryManager

* no on 0 0 SignalManager

* fudge

* no on 0 0 SignalManager

* no on 0 0 PuffModule

4.4.8 creator

Specify the string to use to identify the creating process for event objects.

creator set <string>

4.4.9 AC++ short commands

Short forms of the most common AC++ commands exist and are listed here:

37

Short Form Long Form

mod module
cont events continue
talk module talk
seq sequence
begin events begin
up exit
logout exit
ev events
quit exit

4.4.10 Generic commands in any talk-to

The following commands can be used in any menu in the TCL �le:

exit Leave the current menu, module, or process

help Bring up help text for the current context.

show Display the value of any parameters or statistics associated
with the module.

echo Send text argument to stdout (useful in scripts). This
behaves like the unix echo.

action Command used to control module actions

verbose Turn on verbose screen output. Usage: verbose set t/f

production Suppress all screen output. Usage: production set t/f

4.5 AC++ Required Module Commands

A number of modules are considers \required" in order for analysis to proceed. These
modules include the input and output modules, the pu�ers and the manager modules.

4.5.1 Decompression of Data as they are Read (PuÆng): Pu�Module

Decompression, or \PuÆng" of data is performed automatically by the \Pu�Module".

To save time,unpacking of speci�c objects can be stopped or a list of objects to be
pu�ed (and no others) may be given. After issuing the TCL command

module talk PuffModule

38

the following commands may be used to specify a list of class name strings to be pu�ed if
present in event:

dontPuff set <class1> [class2] ...

dontPuff add <class1> [class2] ...

dontPuff reset

To specify a list of 4char bank name strings to be HEX dumped if in event,
the commands below are used. Note to save on typing you should not type in the
StorableBank part.

puffOnly set <class1> [class2] ...

puffOnly add <class1> [class2] ...

puffOnly reset

The classes are:

AL all banks are unpacked but no coordinate sorting is done

COT coordinates

SVX coordinates

ISL coordiantes

dE/dx

Electrons

Muons

Jets

Calorimeter

Track Fits

NO unpacking

4.5.2 ErrorLoggerManager

The ErrorLoggerManager is the interface to the Error Logging Facility. The error logger
is easily used as a replacement for cout in C++ programs. The logging of errors to the
manager in code is done as:

39

if(reallyBadMistake){

errlog(ELerror,"[NO_AUXRUNDATA]")

<< "SvxPedDBModule::beginRun() was unable to find a"

<< "StorableSvxTsAuxRunData object in the BOR record"

<< endmsg;

return AppResult::ERROR;

}

cout is replaced by errlog with arguments indicating the severity of the error and a string
that can be used to identify errors of that class. The rest of the message looks just like a
cout output and the line is terminated by endmsg instead of endl.

There error severities ranging from lowest to highest are:

� ELincidental

� ELsuccess

� ELinfo

� ELwarning

� ELwarning2

� ELerror

� ELerror2

� ELnextEvent

� ELunspeci�ed

� ELsevere

� ELsevere2

� ELabort

� ELfatal

� ELhighestSeverity

With this usage, the modules interface to infrastructure in a uniform way that allows
logging �les to be de�ned for logging and real time error display.

Control of the messaging is done within a job using the ErrorLoggerManager. These
are the options availble when \talking-to" the ErrorLoggerManager:

err�le Specify whether or not errors should additionally go to a
�le.

40

Format err�le set <�le-to-log-to>

Default None
No �le writing is done

limit Specify the maximum number of times a particular message
should be output.

Format limit set <n>.

Default 10

severity Specify the level to supress messagaes at or below. For
example if this parameter is set to ELINFO, info, sucess
and incidental messages will all be supressed from output.

Format severity set <severity-string>.

Default WARNING

Severity levels correspond to those in the code in a clear way
and are listed here:

� INCIDENTAL

� SUCCESS

� INFO

� WARNING

� WARNING2

� ERROR

� ERROR2

� NEXTEVENT

� UNSPECIFIED

� SEVERE

� SEVERE2

� ABORT

� FATAL

� HIGHESTSEVERITY

4.5.3 CalibrationManager

The CalibrationManager, manages the default calibrations. By identifying the kind of
analysis with the ProcessName command, the manger uses this to go to the database to
�nd out which calibrations are valid for the run you are analyzing. This implies of course
that somebody has �gured this out for you before you ran.

The CDF calibration software learns which database it should use from the manager.
This is communicated by the use of database identi�ers. Some identi�ers are de�ned by
default. New identi�ers can be added as described in Appendix E.

41

The basic commands to control the calibrations being used are listed below. Additional
commands are described in Appendix E.

ProcessName Calibration Process Name that wrote the calibration you wish to use.
A list of process names and their de�nitions may be found in F. By
convention, the process name follows the syntax

Syntax of Process Name <Destination> <Mode> <Detector>
where Destination describes where the calibration is to be used,
Mode describes how the calibration was taken, and Detector
describes to which detector the calibration applies. For example,
ProcessName="PROD BW3 SVX" indicates that this set of
calibrations corresponds to something that can be used in
production (PROD) for the silicon detector (SVX) when the
bandwidth setting is 3 (BW3).

Format ProcessName set <ProcessName>

Default PRODUCTION TEST

Database This identi�er points to the database where the calibration
administration information that relates the run being analyzed to
the required validated calibrations necessary to analyze the data. The
intent here is to allow a text database to be chosen where one can
setup one's own list of calibrations that should be applied to the run.

Format Database set <database-identi�er>

Default BLOB JUNK

DataDB Database-ID: this is the database containing the calibration data
tables.

Format DataDB set <database-identi�er>

Default database oracle o�ine

LoadAll Indicates that all database drivers should be loaded from the default
db-id

Format LoadAll set <true-or-false>
This is boolean and can be set to \t" or \f".

Default f

list List database identi�er de�nitions

Format list

4.5.4 GeometryManager

This module is needed for CdfGeometry and has the following main menu options:

42

DetectorMenu Invokes the DetectorMenu submenu

Cot Invokes the Cot submenu

PrintMenu Invokes the PrintMenu submenu

closeG4Geometry Close the geometry as declared to Geant4.

Format closeG4Geometry set <true-or-false>
This is boolean and can be set to \t" or \f".

Default f

uniformField Select uniform magnetic �eld in CdfDetector (default false). This
does not set a value for the �eld.

Format uniformField set <true-or-false>
This is boolean and can be set to \t" or \f".

Default f

The sub menu options are as follows:

DetectorMenu: All options are set as follows:

Format <option> set <true-or-false>
This is boolean and can be set to \t" or \f".

Defaults are shown in parentheses.

enableB4 Enable building Svx Barrel 4 (default: f).

enableBeamBox Enable building Svx \Beam Box" (default: f).

enableSvx Enable building Silicon detector (default: t).

enableCot Enable building Central outer tracker (default: t).

enableCentralMuon Enable building central muon system <OBSOLETE> (default:
f).

enableForwardMuon Enable building forward muon system <OBSOLETE> (default:
f).

enableMuon Enable building muon system (default: f).

enableCalor Enable building calorimeter system (default: t).

enableClc Enable building central luminosity counters (default: f).

enableTof Enable building time-of-ight system (default: f).

enableStripChamber Enable building strip chamber (default: t).

enablePassive Enable building passive geometry (default: f).

43

enableCPR Enable building pre-shower radiator (default: t).

enableAll Enable building all subsystems (default:f)

Cot: All options are set as follows:

Format <option> set <true-or-false>
This is boolean and can be set to \t" or \f".

Defaults are shown in parentheses.

run1CTCGeometry Whether or not to use CTC geometry in place of COT for Run1
tracking. (default: f)

run1CTCData In the case of run1 CTC, is this data (t) or MC (f). (default: t)

PrintMenu: All options are set as follows:

Format <option> set <true-or-false>
This is boolean and can be set to \t" or \f".

Defaults are shown in parentheses.

printSvx Print geometry information for the Silicon detector. (Default: f)

printCot Print geometry information for the Central outer tracker.
(Default: f)

printCalor Print geometry information for the calorimeter system.(Default:
f)

printStripChamber Print geometry information for the strip chamber.(Default: f)

printCPR Print geometry information for the pre-shower radiator.(Default:
f)

printAll Call the speci�c print method for all enabled detector
nodes.(Default: f)

printTree Print out the whole detector tree using a generic tree walk (very
verbose).(Default: f)

4.5.5 SignalManager

Utility that manages system signals

44

4.6 Histograms:

hist�le Select the Histogram �le name to be used in this job. Note that
this parameter is setable from any histogramming module however
it can not be altered after the �rst begin command when it will be
opened.

Format hist�le set <�leName>

Default HepHist.dat

createHistoFile Create the histogram �le

Format createHistoFile set <true-or.-false> This is boolean and
can be set to \t" or \f".

Default t

reclen Select the Histogram �le record length. The minimum value is 512
and the max is 65536.

Format reclen set <len>

Default 1024

The commands used in connection with the histogram package are described in detail in
Chapter 5.

4.7 Magnetic �eld

Magnetic �eld can be set to a given value for Monte Carlo studies:

talk GEANT3

show # shows current values

help # options including the following

bmagnt list # shows current value of mag. f.

bmagnt set 10.12 # set value

exit

This requires that the GEANT3 module have been built into the executable. More details
on this module may be found in ??. module talk GenPrimVert .

4.8 Beam position for MCarlo

The beam position is generated by the GenPrimVert module. The object ? has methods
? (see chapter ??) that gives beam position information for real data. They also provide

45

e�ective beam positions for correctly simulating the size of the luminous region in Monte
Carlo.

Arbitrary beam sizes may be simulated by means of the �x, �y, and �z parameters of
GenPrimVert

sigma x, sigma y, sigma z �x and �y are oating point numbers giving the desired
sizes of the luminous region in cm, transmitted to ??.
The value of �z , if given, is returned in ???.

Format sigma x set < �x >

Default �x = 0

Format sigma y set < �y >

Default �y = 0

Format sigma z set < �z >

Default �z = 30

sigma t �T of the primary interaction in ns. This is the accuracy
assumed for the known location of the interaction as
measured in time by the CLC.

Format sigma t set < �t >

Default �t = 2

bunch spacing Time in ns between bunches: nb. 132ns or 396ns.

Format bunch spacing set < bunch� spacing >

Default 400

n bunches Number of bunches to be simulated in one event.

Format n bunches set n� bunches

Default 1

Examples :

1. To simulate a luminous region size of 120 x 7 microns that is 36cm long:

talk GenPrimVert

sigma_x set 0.0120

sigma_y set 0.0007

sigma_z set 36.0

exit

2. To smear the beam position uncertainties as measured in time, choose 150ps and
this gives an uncertainty of about 10cm in z.

46

talk GenPrimVert

sigma_t set 0.150

exit

3. To specify the 3 bunches interacting with 132ns time between the bunches:

talk GenPrimVert

nbunches set 3

bunch_spacing set 132

exit

4.9 AC++ Example

Referring again to the example given in Ch. 2, the command

ExampleMyModule_test run.tcl

was issued at the UNIX prompt and then at the AC++ prompt, the command

ev begin -nev 10

was given to process 10 events. Then the show command was given

show

and the result was:

Value of creator for module AC++ is UNKN

**** Listing of all available modules ****

* = Enabled; ! = Active

* ErrorLoggerManager Interface to the Error Logging Facility

* PuffModule Selectively restores the transient event data

* CalibrationManager Manage the default calibrations

* GeometryManager Module needed for CdfGeometry

* SignalManager Utility that manages system signals

* HepHbookManager Initializes HepTuple with Hbook

* MyModule Example user analysis

* ExampleTrackAnalysis Example user analysis

Input Modules

47

* DummyInput dummy input module

* FileInput Default Input Module

*! DHInput Data Handling Input Module

Output Modules

* DummyOutput dummy output module

* FileOutput Standard File Output Module

*! DHOutput Data Handling General Output Module

**** Listing of all available paths ****

* = Enabled; ! = Active

Default (all modules) path AllPath

Filter? Mask nQuery nPassed

* CDF required manager sequence ManagerSequence

* no on 0 0 ErrorLoggerManager

* no on 0 0 PuffModule

* no on 0 0 CalibrationManager

* no on 0 0 GeometryManager

* no on 0 0 SignalManager

* yes on 0 0 HepHbookManager

* yes on 0 0 MyModule

* yes on 0 0 ExampleTrackAnalysis

**** Listing of all available sequences ****

* = Enabled; ! = Active

* CDF required manager sequence ManagerSequence

* no on 0 0 ErrorLoggerManager

* no on 0 0 PuffModule

* no on 0 0 CalibrationManager

* no on 0 0 GeometryManager

* no on 0 0 SignalManager

**** Execution Times for all Modules Run so Far ****

During Event Processing:

========================

Module name: # Calls: Mean cpu time: Mean clk time: Total Cpu:

--

CalibrationMana 10 0.000000+/-0.000000 0.000052+/-0.000002 0.000

DHInput 22 0.066364+/-0.055761 0.069799+/-0.058549 1.460

48

DHOutput 10 0.000000+/-0.000000 0.000044+/-0.000000 0.000

ErrorLoggerMana 10 0.000000+/-0.000000 0.000041+/-0.000000 0.000

ExampleTrackAna 10 0.000000+/-0.000000 0.000712+/-0.000008 0.000

GeometryManager 10 0.000000+/-0.000000 0.000041+/-0.000000 0.000

HepHbookManager 10 0.001000+/-0.001000 0.000309+/-0.000034 0.010

MyModule 10 0.001000+/-0.001000 0.000445+/-0.000005 0.010

PuffModule 10 0.014000+/-0.001633 0.016834+/-0.002022 0.140

SignalManager 10 0.000000+/-0.000000 0.000040+/-0.000000 0.000

� The list of available modules includes the CDF Requried Modules:

{ ErrorLoggerManager

{ Pu�Module

{ CalibrationManager

{ GeometryManager

{ SignalManager

{ HepHbookManager

plus the two modules we have added in:

{ MyModule

{ Pu�Module

The asterisks, *", indicate which modules are enabled. This means that their begin
and end run and job methods are invoked.

For the Input and Output modules, there is only one that can be active and this is
indicated by the exclamation mark, \!".

� The next table shows the default path, AllPath, which consists of the Manager
Sequence, the HepHbookManager, MyModule and ExampleTrackAnalysis. This
illustrates that a sequence is a group of modules that belong logically together and
can be handled in paths as one object. Also, the table shows that some of the
modules can �lter as indicated by a \yes" in the \�lter" column. The display also
indicates if the �lter mask is on as well as the number of attempts to �lter and the
number of successes for each module.

� The sequences are then listed with the same information regarding �ltering as was
shown for paths.

� Finally, the execution time statistics are shown for all modules. These statistics
include the number of times the module was called, the mean CPU, the clock time
and the total cpu time. All numbers are given for the machine upon which the job
is run.

49

Chapter 5

Creating Histograms and Ntuples

The standard histogram package in CDF is HepTuple. This works with either HBOOK
or ROOT; however, working with GEANT at the same time leads to subtle problems
and to overcome these, consult ??. If you don't want to use HepTuple the only system
routines which are called automatically and which refer to HBOOK are the histogram
manager HepHbookManager described in 4.6. Methods which simplify calls to HBOOK
and ROOT are described here and ROOT usage is described in ??. HBOOK histogram
output is directed by the HepHbookManager.

The descriptions here only scratch the surface of the analysis tools available in
HepTuple and no attempt is made to fully document the HepTuple package1.

A full example of an analysis program including histogram and ntuple manipulations
is in Appendix D.

In this chapter, the following classes are de�ned for creating histogram objects:
HepHist1D, HepHist2D, HepNtuple, and HepHistProf. Each of these objects is de�ned in
its own header �le which must be included when referring to the object.

5.1 Booking and Filling Histograms/Ntuples

In AC++ histograms are objects with certain properties (eg. they can be �lled). They are
referred to by pointers to the objects instead of by numerical ID. Therefore the arguments
of the methods for booking histograms are very simliar but not quite the same as the
FORTRAN HBOOK calls in that the ID is the last argument, not the �rst. The reason
for this is that the ID is optional since, after booking, the histogram is referred to for
�lling through the pointer and not through the ID . The ID is used in PAW or ROOT
and can be left to be assigned automatically. Each analysis module gets its own histogram
ID 's, assigned by the order of booking. If one leaves out the ID , then PAW kumacs or
ROOT CINT �les may no longer work properly when a new histogram is inserted in the
booking sequence.

1 http://www.fnal.gov/docs/working-groups/fpcltf/Pkg/HepTuple/doc/html/0HepTuple.html

50

5.1.1 Book a 1�dimensional histogram

my1dHisto01 = &manager->hist1D(title, nX, xMin, xMax, vmx, id);

The method for booking is a member function of the HepFileManager class. The
manager (object) in this case was obtained from the �leManager() function described in
the prerequisites below has been called and the pointer to the HepFileManager (object)
stored in manager.

The result is a pointer to a 1 dimensional histogram object.

This should be done in the beginJob method described in 3.4.

The id is the last argument since it is optional and only used to identify the histogram
in external programs such as PAW. Within the program, �lling is done by referring to the
pointer to the histgram returned by the booking method. Normally the pointer is given
a name that makes the usage transparent. For example, a pointer to a histogram called
\ rapidityHisto" makes it clear that rapidity information should be found in the histogram
object to which it points.

Input arguments:

title histogram title

nX number of bins

xMin lower edge of lowest bin

xMax upper edge of highest bin

vmx normally set equal to 0.{ see HBOOK manual2 for details.

id histogram id number { nonzero integer

Return Value:

HepHist1D* my1dHisto01 pointer to the histogram (a HepHist1D histogram object).
This pointer should be a private member of the AC++ module. Hence it
is declared in the header �le3. There is one such pointer for each histogram
and is used to refer to the histogram in the �lling method.

Header File: HepTuple/HepHist1D.h

Prerequisites:

manager A pointer to the HepFileManager object, manager, has to obtained from
the framework before the histogram can be booked. This is done using
the �leManager() method as follows:

2 http://wwwinfo.cern.ch/asdoc/hbook html3/hboomain.html
3Ideally it should be initialized to zero the module class constructor, and receives a value only when

this booking occurs.

51

HepFileManager* manager = fileManager();

my1dHisto01 This must declared in the header �le of the module class as follows:

private:

HepHist1D* _my1dHisto01;

hist1D always deletes an existing histogram and creates a new one.

5.1.2 Book a 2�dimensional histogram

my2dHisto01 = & mananger->hist2D(title, nX, xMin, xMax, nY, yMin, yMax, vmx, id);

hist2D includes the same features as hist1D.

Input arguments:

title histogram title

nX number of bins in X

xMin lower edge of lowest X bin

xMax upper edge of highest X bin

nY number of bins in Y

yMin lower edge of lowest Y bin

yMax upper edge of highest Y bin

vmx normally set equal to 0.{ see HBOOK manual4 for details.

id histogram id number { nonzero integer

Return Value:

HepHist2D* my2dHisto01 pointer to the histogram (a HepHist2D histogram object).
This pointer should be a private member of the AC++ module. Hence it
is declared in the header �le5. There is one such pointer for each histogram
and is used to refer to the histogram in the �lling method.

Header File: HepTuple/HepHist2D.h

Prerequisites:

4 http://wwwinfo.cern.ch/asdoc/hbook html3/hboomain.html
5Ideally it should be initialized to zero the module class constructor, and receives a value only when

this booking occurs.

52

manager A pointer to the HepFileManager object, manager, has to obtained from
the framework before the histogram can be booked. This is done using
the �leManager() method as follows:

HepFileManager* manager = fileManager();

my2dHisto01 This must declared in the header �le of the class as follows:

private:

HepHist2D* _my2dHisto01;

5.1.3 Book a Pro�le histogram

myProfHist = &manager->histProf(title, nX, xMin, xMax, yMin, yMax, ChOpt,id);

The pro�le histogram follows the same rules as a 1d or 2d histogram as described
in 5.1.1 and 5.1.2.

5.1.4 Book an Ntuple

myNtuple = &manager->ntuple(title, id);

The id at the end is optional but is useful for referring to the histogram in PAW or
other such programs.

Input arguments:

title Ntuple title

id Ntuple id number { nonzero integer

Return Value:

HepNtuple* myNtuple pointer to the histogram (a HepNtuple histogram object)
This pointer should be a private member of the AC++ module. Hence it
is declared in the header �le6. There is one such pointer for each Ntuple.

Header File: HepTuple/HepHistProf.h

Prerequisites:

manager A pointer to the HepFileManager object, manager, has to obtained from
the framework before the histogram can be booked. This is done using
the �leManager() method as follows:

6Ideally it should be initialized to zero the module class constructor, and receives a value only when
this booking occurs.

53

HepFileManager* manager = fileManager();

myNtuple This must declared in the header �le of the module class as follows:

private:

HepNtuple* _myNtuple;

After this is done

1. The Columns of the Ntuple must be de�ned as described in 5.1.5.

2. The Ntuple should be cleared as described in 5.1.6

Existing Ntuples will not be overwritten (cf. histograms 5.1.1).

5.1.5 De�ne the Columns of an Ntuple

myNtuple->column(tag,value,default);

Input arguments:

tag A string indicating the name of the column.

value Can be used to �ll a value immediately, but if used in the beginJob
method, it is best to declare this to zero.

default This can be used to give a value when �lling if no argument for �lling is
given. Filling is described in 5.1.8 and 5.1.9.

Return Value:

NONE

Header File: HepTuple/HepHistNtuple.h

Prerequisites:

myNtuple a pointer to a HepNtuple must have been de�ned, the Ntuple booked
and all the prerequisites of Ntuple booking must have been followed as
described in 5.1.4.

The Ntuple should be cleared as described in 5.1.6.

54

5.1.6 Clear the Ntuple

myNtuple->clearData();

Input arguments:

NONE

Return Value:

NONE

Header File: HepTuple/HepHistNtuple.h

Prerequisites:

myNtuple a pointer to a HepNtuple must have been de�ned, the Ntuple booked, all
the prerequisites of Ntuple booking must have been followed as described
in 5.1.4, the columns should also have been de�ned as described in 5.1.5.

5.1.7 Filling a Histogram: Accumulate Step

myHisto->accumulate(valueX,valueY,weight);

Input arguments:

valueX X value to be �lled into the histogram.

valueY Y value to be �lled into the histogram.

weight Weight to be �lled into the histogram.

Return Value:

NONE For a 1d histogram the Y value is ignored. The weight defaults to 1.0.
All values are oat.

Header File: HepTuple/HepHist1d.h, HepTuple/HepHist2d.h,
or HepTuple/HepHistProf.h, depending on which type of object is being
�lled.

Prerequisite:

myHisto

A pointer to a histogram must have been de�ned through booking as
described in 5.1.1,

55

5.1.8 Filling an Ntuple: Capture Step

myNtuple->capture(tag,value);

Input arguments:

tag A string indicating the name of the column as described in 5.1.5.

value Value to be �lled into the ntuple.

Return Value:

NONE

Header File: HepTuple/HepHistNtuple.h

Prerequisites:

myNtuple 1. A pointer to a HepNtuple must have been de�ned as described
in 5.1.4,

2. The columns de�ned 5.1.5,

3. The ntuple cleared before initial �lling as described in 5.1.6.

After the ntuple information is captured it must

1. Be stored as described in 5.1.97.

2. Be cleared as was described in 5.1.6.

5.1.9 Filling an Ntuple: Store Step

myNtuple->storeCapturedData();

Input arguments:

NONE

Return Value:

NONE

Header File: HepTuple/HepHistNtuple.h

Prerequisites:

myNtuple 1. A pointer to a HepNtuple must have been de�ned as described
in 5.1.4,

7The capture and store steps are equivalent to the HBOOK HFN call in FORTRAN.

56

2. The columns de�ned as described in 5.1.5,

3. The ntuple cleared before initial �lling as described in 5.1.6.

4. The information should have been captured as described in 5.1.8.

When the information is stored, if the value for a column is not speci�ed, its default as
declared in column as described in 5.1.5 is used8.

After storage, the ntuple must be cleared with clearData as described in 5.1.6

5.1.10 Sample AC++ program to book and �ll histogram, Ntuple

This example is a portion of that in ExampleMyModule/ExampleTrackAnalysis. The full
text is included in D The �rst section must be in the header �le and the second in the
C++ source code �le.

From header �le: ExampleTrackAnalysis.hh

// Description:

// Class ExampleTrackAnalysis. This is a simple example of a user module.

// It books a few histograms, fills them. Also makes use of talk-to,

// filtering, and uses a modern (i.e. non-banks) analysis-level

// data structure in the event record.

// Author List:

// Ken Bloom

//

//--

#ifndef EXAMPLETRACKANA_HH

#define EXAMPLETRACKANA_HH

//----------------------

// Base Class Headers --

//----------------------

#include "FrameMods/HepHistModule.hh"

#ifdef CDF

#include "BaBar/Cdf.hh"

#endif

//------------------------------------

// Collaborating Class Declarations --

//------------------------------------

#include "Framework/AbsParmDouble.hh"

class HepHist1D;

class HepNtuple;

8The capture and store steps are equivalent to the HBOOK HFN call in FORTRAN.

57

// ---------------------

// -- Class Interface --

// ---------------------

class ExampleTrackAnalysis : public HepHistModule {

//--------------------

// Instance Members --

//--------------------

public:

// Constructors

ExampleTrackAnalysis(const char* const theName = "ExampleTrackAnalysis",

const char* const theDescription = "Example user analysis");

// Destructor

virtual ~ExampleTrackAnalysis();

// Operations

virtual AppResult beginJob(AbsEvent* aJob);

virtual AppResult event(AbsEvent* event);

private:

HepHist1D* _ptHisto;

};

#endif

The C++ �le: ExampleTrackAnalysis.cc

//--

// File and Version Information:

// $Id: ch5.tex,v 1.2 2001/01/15 13:53:45 stdenis Exp $

//

// Description:

// Class MyModule. This is a simple example of a user module. It

// books a few histograms, fills them.

//

// The "event" entry point is where you should add code to

// process event data; define histograms & ntuples in "beginJob"

//

// Author List:

58

// Ken Bloom

//

//--

//-----------------------

// This Class's Header --

//-----------------------

#include "ExampleMyModule/ExampleTrackAnalysis.hh"

//-------------

// C Headers --

//-------------

#include <assert.h>

#include <math.h>

//---------------

// C++ Headers --

//---------------

//-------------------------------

// Collaborating Class Headers --

//-------------------------------

#include "AbsEnv/AbsEnv.hh"

#include "HepTuple/HepHist1D.h"

#include "HepTuple/HepHBookNtuple.h"

#include "Edm/EventRecord.hh"

#include "Edm/ConstHandle.hh"

#include "TrackingObjects/Storable/CdfTrackView.hh"

#include "TrackingObjects/Tracks/CdfTrack.hh"

//---

// Local Macros, Typedefs, Structures, Unions and Forward Declarations --

//---

static const char rcsid[] = "$Id: ExampleTrackAnalysis.cc,v 1.3 2000/11/03 22:06

44 bloom Exp $";

//----------------

// Constructors --

//----------------

ExampleTrackAnalysis::ExampleTrackAnalysis(

const char* const theName,

const char* const theDescription)

: HepHistModule(theName, theDescription)

{

59

}

//--------------

// Destructor --

//--------------

ExampleTrackAnalysis::~ExampleTrackAnalysis()

{

}

//--------------

// Operations --

//--------------

AppResult ExampleTrackAnalysis::beginJob(AbsEvent* aJob)

{

//First get access to the object that manages histogram memory space.

HepFileManager* manager = fileManager();

//Book an ntuple.

_ntuple = &manager->ntuple("Tracks",1);

//Definecolumns

_ntuple->column("run",(int)0,(int)0);

_ntuple->column("event",(int)0,(int)0);

_ntuple->column("trknum",(int)0,(int)0);

_ntuple->column("pT",(float)0.,(float)0.);

//Clear and prepare for filling

_ntuple->clearData();

//Book histograms.

_ptHisto = &manager->hist1D("Track pT", 100, 0.0, 20.0,10);

return AppResult::OK;

}

AppResult ExampleTrackAnalysis::event(AbsEvent* anEvent)

{

//By default, this event does not pass the filter.

bool filter_pass = false;

//Access the "default" set of tracks in the event by making a CdfTrackView.

CdfTrackView_h hView; // This is the handle for the "view."

if (CdfTrackView::defTracks(hView) == CdfTrackView::OK) {

// The view is now filled with the default tracks, so extract contents.

const CdfTrackView::CollType & tracks = hView->contents();

60

// Now loop over the tracks, doing a double-dereference to get at each.

for (CdfTrackView::const_iterator it = tracks.begin();

it != tracks.end(); ++it) {

const CdfTrack & trk = **it;

//Extract the pt

float pt = trk.pt();

//Fill ntuple.

_ntuple->capture("run",AbsEnv::instance()->runNumber());

_ntuple->capture("event",AbsEnv::instance()->trigNumber());

_ntuple->capture("trknum",(int)trk.id().value());

_ntuple->capture("pT",pt);

//Store Data

_ntuple->storeCapturedData();

//Clear for next event

_ntuple->clearData();

//Fill histogram

_ptHisto->accumulate(pt);

}

}

return AppResult::OK;

}

5.2 Histogram output � the TCL �le

hist�le Select the Histogram �le name to be used in this job. Note that
this parameter is setable from any histogramming module however
it can not be altered after the �rst begin command when it will be
opened.

Format hist�le set <�leName>

Default HepHist.dat

createHistoFile Create the histogram �le

Format createHistoFile set <true-or.-false> This is boolean and
can be set to \t" or \f".

Default t

reclen Select the Histogram �le record length. The minimum value is 512
and the max is 65536.

Format reclen set <len>

Default 1024

61

Appendix A

Useful References

AC++ Manual
http://www-cdf.fnal.gov/upgrades/computing/projects/framework/frame over/frame over.html

Coding Guidelines
http://cdfsga.fnal.gov/computing/coding guidelines/

Database Browser Guide
http://www-cdf.fnal.gov/internal/upgrades/computing/database/browser/browserguide.htm

Database Browser URL
http://cdfdbb.fnal.gov:8520/cdfr2/databases

Data File Catalog Guide
http://rutpc7.fnal.gov/ratnikov/Docs/DHIOModuleReference.htm

Event Data Model (EDM) guide
http://www-cdf.fnal.gov/upgrades/computing/projects/edm/edm.html

Hbook Manual (URL)
http://wwwinfo.cern.ch/asdoc/hbook html3/hboomain.html

HepTuple Manual (URL)
http://www.fnal.gov/docs/working-groups/fpcltf/Pkg/HepTuple/doc/html/0HepTuple.html

TryBos Manual (URL)
http://www-cdf.fnal.gov/upgrades/computing/projects/trybos/trybos.html

62

Appendix B

\Getting Started" Failures

In this Appendix, a few possible failures with getting started are noted and solutions are
given. Section B.1 gives hints on what to do if gmake fails. Section B.2 gives hints on
what to do if you have trouble with PAW. Throughout this Appendix, commands to be
entered are indicated by preceeding it with the prompt <fcdfsgi2>.

B.1 gmake Trouble

When gmake fails, the �rst thing to check is if you have run out of disk space. The
command to use is:

<fcdfsgi2> quota -v

with the result

Disk quotas for stdenis (uid 8906):

Filesystem usage quota limit timeleft files quota limit timeleft

/var/mail 0 51200 51200 0 0 0

/cdf/scratch 64396 1048576 1048576 705 20480 20480

/cdf/spool 0 512000 512000 1 10240 10240

/cdf/home 29100 204800 204800 1557 10240 10240

In this case all is well because the Filesystem called /cdf/home has a usage of 29100 that
is under its quota of 204800 for the space. The number of �les, indicated by �les, is 1557,
well under the quota of 10240. If you have run out of space and even after clearing out all
your �les, then you must try the following trick from SRT:

� make a �le called .srtrc with the following:

"$extra_dirs tmp>/cdf/scratch/$USER/releases/$release/tmp

bin>/cdf/scratch/$USER/releases/$release/bin

lib>/cdf/scratch/$USER/releases/$release/lib

results>/cdf/scratch/$USER/releases/results"

63

This should all be in a single line in the �le .srtrc. This will put all your binaries,
libraries and results directories from your release on your scratch disk. If you use lots
of packages, you will eventually �ll the scratch quota on the �lesystem /cdf/scratch
as well!

� Go to your scratch area and create a directory called releases:

<fcdfsgi2>cd /cdf/scratch/$USER

<fcdfsgi2>mkdir releases

This solution has the problem that you have to remember to clean up both the release
your created and what is on your scratch area when you don't want your test release any
longer.

B.2 PAW Trouble

If you try to run PAW on fcdfsgi2 as follows:

<fcdfsgi2> paw

and you get the error:

Calling 2000 version of paw-X11

**

* *

* W E L C O M E to P A W *

* *

* Version 2.11/11 9 November 1999 *

* *

**

Workstation type (?=HELP) <CR>=1 :

Version 1.26/04 of HIGZ started

***** ERROR in IOPWK : Can't open DISPLAY

***** ERROR in IACWK : Workstation is not open

***** ERROR in ISWKWN : Invalid workstation window parameters

***** ERROR in ISWKVP : Invalid workstation window parameters

PAW >

you need to �x up your DISPLAY enviroment variable: Suppose your PC is called
cdf01.fnal.gov. Then you must type:

setenv DISPLAY cdf01.fnal.gov:0.0

64

for c shell or

DISPLAY=cdf01.fnal.gov:0.0; export DISPLAY

in bash. You can also use:

setenv DISPLAY `echo $REMOTEHOST`:0.0

or

DISPLAY=`echo $REMOTEHOST`:0.0 ; export DISPLAY

This works on any PC and is transferable.

By the way, it is a lot easier to check these connections if you dont use PAW, but
XLOGO. The command

<fcdfsgi2> xlogo

will display an \X" in window on your PC. If this fails, the command and error message
is:

<fcdfsgi2> xlogo

Error: Can't open display:

Another mode of failure is

<fcdfsgi2> paw

Calling 2000 version of paw-X11

**

* *

* W E L C O M E to P A W *

* *

* Version 2.11/11 9 November 1999 *

* *

**

Workstation type (?=HELP) <CR>=1 :

Version 1.26/04 of HIGZ started

Xlib: connection to "cdf01.fnal.gov:0.0" refused by server

Xlib: Client is not authorized to connect to Server

***** ERROR in IOPWK : Can't open DISPLAY

***** ERROR in IACWK : Workstation is not open

***** ERROR in ISWKWN : Invalid workstation window parameters

65

***** ERROR in ISWKVP : Invalid workstation window parameters

PAW >

The di�erence from the problem shown above is the Xlib error messages. This tells
you that the problem is that you not allowed windows to be popped upon your PC.

To overcome this failure type

xhost + fcdfsgi2.fnal.gov

in some window on your LINUX PC.

Again, it is easier to diagnose this error with XLOGO. When the error occurs, you
�nd the session gives:

fcdfsgi2> xlogo

Xlib: connection to "cdf01.fnal.gov:0.0" refused by server

Xlib: Client is not authorized to connect to Server

Error: Can't open display: cdf01.fnal.gov:0.0

66

Appendix C

Program Structure

main main program

|

+-------| PROGRAM INITIALIZATION

| |

| |

| +-- a->beginJob initialization for Module a

| +-- b->beginJob initialization for Module b

| .

| +-- n->beginJob initialization for Module n

| +-- myModule->beginJob user initialization <---

|

+->-+--DHInput->event READ EVENTS

| | Take action based on event type, file status

| -----------

| | | | |

| | | | | open input files; queue tape requests; read next record

| | | | |

| | | | | terminate job if eof or time limit or ...

| | | | |

| | | | +-- a->endJob event analysis from Module a

| | | | +-- b->endJob event analysis from Module b

| | | | .

| | | | +-- n->endJob event analysis from Module N

| | | | +-- myModule->endJob

| | | |

| | | +-- a->beginRun event analysis from Module a

| | | +-- b->beginRun event analysis from Module b

| | | .

| | | +-- n->beginRun event analysis from Module N

| | | +-...myModule-> beginRun called for every new run

| | | |

| |---<---|

| | | close input files; compute stats, reset histos

| | |

| | +-- a->endRun event analysis from Module a

67

| | +-- b->endRun event analysis from Module b

| | .

| | +-- n->endRun event analysis from Module N

| | +-...myModule-> endRun called for every new run

|------<--|

| |

| +---- PROCESS ONE EVENT

| | | |

| | | +-- a->event event analysis from Module a

| | | +-- b->event event analysis from Module b

| | | .

| | | +-- n->event event analysis from Module N

| | | |

+-<-+ | +-- myModule->event user event analysis <---

|

|

+-- a->other other analysis from Module a

+-- b->other other analysis from Module b

.

+-- n->other other analysis from Module N

|

+-- myModule->other user event analysis

Arrows (<---) indicate the important user routines.

68

Appendix D

Full Example of an Analysis Module

This is an full example of an analysis module. The �rst �le is the header �le for the
module, containing the declarations of the methods, the parameters for the module and
any other private members or classes needed by the module. The second �le is the C++
code for the module. The third �le is the build �le for the module.

These �les must be placed into the correct directory structure for the build to occur
properly. This is currently done by checking out the example from the CVS repository as
decribed in Ch. 2. In addition, dependencies of the module on other objects in the CDF
o�ine needs to be speci�ed in another �le. This is described below.

D.1 Description of the Directory Structure

Software Release Tools are used to create directory structures into which the code for
the analysis modules are placed. This section �rst describes the head of the test release,
then goes on to describe the contents of the individual package, in this case, a package
corresponding to the ExampleMyModule.

D.1.1 The Head of the Release

After one has followed the instructions for creating a \test release" as described in Ch. 2,
one has in the subdirectory ana the following contents:

GNUmakefile doc lib results ups

bin include man tmp

Reference to all �les then is made relative to this directory, referred to as the head of
the test release. The only �le in this directory is the GNUmake�le and one never edits
this �le. The doc, lib, man, tmp, and include areas point to the libraries, man pages,
temporary and include �les of any additional software that is added to this structure. The
.cc, .hh and build �les for a module are examples of software to be added. This is done in

69

the context of a package. The easist way to proceed is to check out an example package
and modify the .cc, .hh and build �les as described in the next section.

The bin area contains all binary executables that are built by the make�les.

D.1.2 Packages

After the addpkg -h ExampleMyModule command has been issued, the ana directory at
the head of the release contains:

ExampleMyModule doc man ups

GNUmakefile include results

bin lib tmp

The interesting directories are those referring to the package ExampleMyModule. This
is where the .cc, .hh and �les for building the executable are found.

The ExampleMyModule directory contains the following:

BuildExampleMyModule_test.cc MyModule.hh

CVS README

ExampleTrackAnalysis.cc link_ExampleMyModule.mk

ExampleTrackAnalysis.hh run.tcl

GNUmakefile run_track.tcl

MyModule.cc

The �le BuildExampleMyModule test.cc is the build �le and speci�es the various
modules that will comprise the binary executable, the AC++ program. It is shown in D.4.

There are two �les with .cc and .hh extensions corresponding to two modules, one
called ExampleTrackAnalysis and the other ExampleMyModule. The modules are the
classes whose methods are described in Ch. 3. The ExampleMyModule will be described
in the following sections.

D.2 The Header File

The name \MyModule" is de�ned by the Build (see D.4) and and Make�le (see D.5) �les.
This name can be changed but must be done so consistently throughout.

The header �le: MyModule.hh

//--

70

// File and Version Information:

// $Id: app_exampcode.tex,v 1.2 2001/01/15 13:53:45 stdenis Exp $

//

// Description:

// Class MyModule. This is a simple example of a user module. It

// books a few histograms, fills them.

//

// Environment:

// Software developed for CDF.

//

// Author List:

// Liz Sexton-Kennedy

//

//--

#ifndef MYMODULE_HH

#define MYMODULE_HH

//----------------------

// Base Class Headers --

//----------------------

#include "FrameMods/HepHistModule.hh"

//------------------------------------

// Collaborating Class Declarations --

//------------------------------------

class HepHist1D;

// ---------------------

// -- Class Interface --

// ---------------------

class MyModule : public HepHistModule {

//--------------------

// Instance Members --

//--------------------

public:

// Constructors

MyModule(const char* const theName = "MyModule",

const char* const theDescription = "Example user analysis");

// Destructor

virtual ~MyModule();

71

// Operations

virtual AppResult beginJob(AbsEvent* aJob);

virtual AppResult event(AbsEvent* event);

virtual AppModule* clone(const char* cloneName);

const char* rcsId() const;

private:

HepHist1D* _EHisto;

HepHist1D* _MassHisto;

};

#endif

The elements of this �le are as follows:

C++ Macro Declarations The declarations

#ifndef MYMODULE_HH

#define MYMODULE_HH

are at the start of the �le, after comments. These are
important because it allows the header �le to be imbedded
in another header �le. Since one is never quite aware of what
is in a header �le without explicitly looking at the code, if
a header secretly includes another header �le, then having a
second inclusion of the same header �le will cause no harm if
these statements are included and the

#endif

statement is included at the very end.

Base Class Include This being a histogramming module, requires that the header
for the histogramming module be included. All AC++
modules inherit from a base class. For a detailed explanation
of the various optional classes, see ??. For most purposes, the
histogramming base class will do.

Collaborating Classes The histogramming classes must be declared in the header so
that the pointers may be declared as private members of the
AC++ module class.

class MyModule : public HepHistModule f This is the declaration of the uers's
module itself, inheriting from a histogramming module
class, HepHistModule. For a detailed explanation of the

72

various optional classes, see ??. For most purposes,
the histogramming base class will do. This is named
HepHistModule. This and associated �les have been
connected in by the \setup cdfsoft2 3.11.0" command.

public: The public members of the AC++ module class follow.

Constructor The constructor is declared with the module name and the
description of the module as was described in 3.8.1.

Destructor The destructor is declared with the module name and the
description of the module as was described in 3.8.2.

User Methods The user methods are declared. Here the beginJob(), event()
and clone() methods described in 3.4, 3.5, and 3.7.5 are
declared.

RCS ID The revision control system identi�er is added. This is to
allow one to query as to the CVS revision number so that
backwards compatibility may be maintained. When releasing
code for public use, backwards compatibility becomes a
serious issue and use of this is important. Further information
on the usage of this may be found in ??.

private: The private member declarations follow. This will include
talk-to parameters and histogram pointers. In this case there
are two histograms to be booked and hence the two pointers
are required. Because of the usage of the histogram class
names, it was necessary to have already declared that there
exists this histogram class.

D.3 The C++ File

The C++ �le: MyModule.cc

//--

// File and Version Information:

// $Id: app_exampcode.tex,v 1.2 2001/01/15 13:53:45 stdenis Exp $

//

// Description:

// Class MyModule. This is a simple example of a user module. It

// books a few histograms, fills them.

//

// The "fillHistograms" entry point is where you should add code to

// process event data; define histograms & ntuples in "beginJob"

//

// Environment:

73

// Software developed for CDF.

//

// Author List:

// Liz Sexton-Kennedy

//

//--

//#include "ISOcxx/ISOcxx.h"

//-----------------------

// This Class's Header --

//-----------------------

#include "ExampleMyModule/MyModule.hh"

//-------------

// C Headers --

//-------------

#include <cassert>

//---------------

// C++ Headers --

//---------------

//-------------------------------

// Collaborating Class Headers --

//-------------------------------

#include "HepTuple/HepHist1D.h"

#include "Edm/EventRecord.hh"

#include "Edm/ConstHandle.hh"

#include "StorableBanks/CMUO_StorableBank.hh"

//---

// Local Macros, Typedefs, Structures, Unions and Forward Declarations --

//---

static const char rcsid[] = "$Id: app_exampcode.tex,v 1.2 2001/01/15 13:53:45 stdenis Exp $";

//----------------

// Constructors --

//----------------

MyModule::MyModule(

const char* const theName,

const char* const theDescription)

: HepHistModule(theName, theDescription)

{

}

//--------------

74

// Destructor --

//--------------

MyModule::~MyModule()

{

}

//--------------

// Operations --

//--------------

AppResult MyModule::beginJob(AbsEvent* aJob)

{

HepFileManager* manager = fileManager();

assert(0 != manager);

_EHisto = &manager->hist1D("Muon Energy", 100, .5, 50.0, 100);

assert(0 != _EHisto);

_MassHisto = &manager->hist1D("Pair Mass", 100 , 0.0, 5.0, 101);

assert(0 != _MassHisto);

return AppResult::OK;

}

AppResult MyModule::event(AbsEvent* anEvent)

{

const double jpsi_mass = 3.09688 ;

const double mass_window_halfwidth = 3.0000 ;

/*==*\

* Loop over distinct CMUO bank pairs within the event

==/

const double min_muon_pt = 1.5; // past the steel

for (EventRecord::ConstIterator muon_iter1(anEvent, "CMUO_StorableBank") ;

muon_iter1.is_valid() ; ++muon_iter1)

{

for (EventRecord::ConstIterator muon_iter2(muon_iter1.peek_ahead()) ;

muon_iter2.is_valid() ; ++muon_iter2)

{

ConstHandle<CMUO_StorableBank> h_CMUO_1(muon_iter1) ;

ConstHandle<CMUO_StorableBank> h_CMUO_2(muon_iter2) ;

//---

// Cut on Muon Pt and Charge

//---

if ((h_CMUO_1->pt() > min_muon_pt) &&

(h_CMUO_2->pt() > min_muon_pt) &&

(h_CMUO_1->em_charge() + h_CMUO_2->em_charge() == 0))

75

{

//---

// Determine the pair mass of JPsi Candidate

//---

double px = h_CMUO_1->px() + h_CMUO_2->px() ;

double py = h_CMUO_1->py() + h_CMUO_2->py() ;

double pz = h_CMUO_1->pz() + h_CMUO_2->pz() ;

double energy = h_CMUO_1->energy() + h_CMUO_2->energy() ;

double pair_mass2 = energy*energy - px*px - py*py - pz*pz ;

double pair_mass = 0.0 ;

if (pair_mass2 >= 0.0)

{

pair_mass = sqrt(pair_mass2) ;

}

else

{

pair_mass = -sqrt(-pair_mass2) ;

}

//---

// Cut on JPsi Candidate mass

//---

if (fabs(pair_mass - jpsi_mass) < mass_window_halfwidth)

{

energy = h_CMUO_1->energy();

//--*\

// JPsi Candidate found now histogram fill it

//--*/

_EHisto->accumulate(energy);

_MassHisto->accumulate(pair_mass);

}

}

}

}

return AppResult::OK;

}

AppModule*

MyModule::clone(const char* cloneName)

{

76

return new MyModule(cloneName,"this module is a clone MyModule");

}

const char *

MyModule::rcsId() const

{

return rcsid;

}

D.4 The Build File

//--

// File and Version Information:

// $Id: app_exampcode.tex,v 1.2 2001/01/15 13:53:45 stdenis Exp $

//

// Description:

// Class AppUserBuild. This class must be provided by the user of

// the framework in order to build an application. It must define

// the modules that are to form the basis of the application.

//

// Environment:

// Software developed for the CDF Detector

//

//--

//-----------------------

// This Class's Header --

//-----------------------

#include "Framework/APPUserBuild.hh"

//-------------------------------

// Collaborating Class Headers --

//-------------------------------

#include "ExampleMyModule/MyModule.hh"

#include "ExampleMyModule/ExampleTrackAnalysis.hh"

#include "FrameMods/addCDFrequiredModules.hh"

#include "FrameMods/addAllStorableObjects.hh"

#include "FrameMods/hbook/HepHbookManager.hh"

//#include "FrameMods/root/HepRootManager.hh"

//---

// Local Macros, Typedefs, Structures, Unions and Forward Declarations --

//---

77

static const char rcsid[] = "$Id: app_exampcode.tex,v 1.2 2001/01/15 13:53:45 stdenis Exp $";

//----------------

// Constructors --

//----------------

AppUserBuild::AppUserBuild(AppFramework* theFramework)

: AppBuild(theFramework)

{

addCDFrequiredModules(this);

// This is needed because the ExampleTrackAnalysis module wants to

// look at the output of ProductionExe

addAllStorableObjects();

AppModule* aModule;

// This is a utility module whose only purpose is to select a histogram

// manager type:

// aModule = new HepRootManager();

// comment out the next line and uncomment the above line if you want

// root instead.

aModule = new HepHbookManager();

add(aModule);

aModule = new MyModule();

add(aModule);

aModule = new ExampleTrackAnalysis();

add(aModule);

// Any any other modules you want to link here...

}

//--------------

// Destructor --

//--------------

AppUserBuild::~AppUserBuild()

{

}

const char * AppUserBuild::rcsId() const

{

return rcsid;

78

}

D.5 The Make�le

example Makefile for CDF packages

#

uses SoftRelTools/standard.mk

#

###

file lists (standard names, local contents)

include file products

INC =

library product

LIB = libExampleMyModule.a

library contents

Note: source files with main() definitions do not go

into the library.

Any file copied from AppUserBuild_template.cc should

also be skipped.

skip_files := BuildExampleMyModule_test.cc

LIBCCFILES = $(filter-out $(skip_files), $(wildcard *.cc))

LIBFFILES = $(wildcard *.F)

LIBCFILES = $(wildcard *.c)

override LINK_ExampleMyModule += ExampleMyModule

override LINK_FrameMods += ExampleMyModule

override LINK_TrackingMods += ExampleMyModule

override LINK_FrameMods_hbook += ExampleMyModule

override LINK_FrameMods_dump += ExampleMyModule

-include PackageList/link_all.mk

binary products

BINS = ExampleMyModule_test

COMPLEXBIN = ExampleMyModule_test

BINCCFILES = BuildExampleMyModule_test.cc

##

include SoftRelTools/arch_spec_STL.mk

79

include SoftRelTools/standard.mk

80

Appendix E

Advanced Features of the CalibrationManager

Required Module

add Format: add <db identi�er> <db type> <db name>

The database identi�er is any character string that is then used in
the code to open the database for a speci�c table.

The database is one of the following:

OTL Oracle Template Library { this is the Oracle
Database

Text The text database. See ?? for details on what a text
database is and how to create one.

msql MSQL database: a freeware database

The database name depends on the database used:

OTL The username, password and name of the database,
written in the format:

Format: <username>/<password>@<database>

The syntax

Format: /@cdfondev

can be used by all CDF users who have an
account on the online development machine. CDF
users are automatically given an account on the
Oracle development database so the username and
passwords are not needed since Oracle leaves the
responsibility for logging in to the operating system.

Text The directory containing the text database. See ??
for details on what a text database is and how to
create one.

msql The directory containing the MSQL database.

IomapFile Format: IomapFile set <iomap-�lename>

Default: NONE (takes the one in DBManager/iomap.txt).

Description: The Name of the DBManager IoMap �le you wish to
use: if no value is entered, the DBManager defaults are used.

81

The full directory path may be included in the iomap-�lename.

If no path is speci�ed, the present working directory is used.

Individual entries in the iomap �le name follow the same syntax
rules as the add command.

When creating an IoMapFile, on must set the access to 600:

chmod 600 iomap.txt

Version Format: Version set <version>

Default: 9999999

Description: Enter the Calibration version you wish to use.

LoadAll Format: LoadAll set <true-or-false>
This is boolean and can be set to \t" or \f".

Default: f

Description: Indicates that all database drivers should be loaded
from the default db-id

Jobset Format: Jobset set <jobset-number>

Default: -1

Description: jobset # (Force the use of this jobset for this job). A
jobset is used to relate the valid calibrations to the ones that
should be used to analyze the data. This rather byzantine relation
is described in ??

Debug Format: Debug set <true-or-false>
This is boolean and can be set to \t" or \f".

Default: f

Description: Set this to false to stop any queries to USED SETS {
very dangerous if you want calibration data and are not an expert!

UseKeyDB Format: UseKeyDB set <true-or-false>
This is boolean and can be set to \t" or \f".

Default: t

Description: Set this to true to turn on warning/error messages if
you are using the KEYDB For information on the Key database
see ??.

82

Appendix F

Process Names

Process names are built in the form < destination > < system > < calib mode >. Some
process names do not follow this pattern and will eventually stop being used.

The most process names are:

PROCESS NAME DEST SYS MODE USAGE

PROD COMM CDF PROD CDF COMM Analysis of all PAD data from
the commissioning run

Details on other process names, and the calibration modes, systems and destinations
are given in the following pages.

83

The table below describes the process names and the following tables give the possible
destinations, system and calibration modes.

PROCESS NAME DESTINATION SYSTEM CALIB MODE

COT TEST UNKNOWN COT TEST
L3 TRIGGER L3 TRIG UNDEFINED
MUON TEST UNKNOWN MUON TEST
PRODUCTION TEST PROD CDF TEST
PESCALIB TEST UNKNOWN SMX TEST
RUN1 CTC CONSTANTS UNKNOWN CTC RUN1
TEST UNKNOWN CDF UNDEFINED
CALOR DOWNLOADS CRATES CAL UNDEFINED
CALOR DOWNLOADS FLASHER CRATES CAL FLASH
CR S1 BW4 132 UNKNOWN SVX BW4S1
CRATES PHYSICS CAL CRATES CAL PHYSICS
CRATES SOURCE CAL CRATES CAL SOURCE
CRATES FLASH CAL CRATES CAL FLASH
PROD COMM COT PROD COT COMM
PROD TEST COT PROD COT TEST
PROD COMM CAL PROD CAL COMM
PROD TEST CAL PROD CAL TEST
PROD TEST MUON PROD MUON TEST
PROD BW2S1 SVX PROD SVX BW2S1
PROD BW3S1 SVX PROD SVX BW3S1
PROD BW4S1 SVX PROD SVX BW4S1
PROD BW4S2 SVX PROD SVX BW4S2
PROD BW4S3 SVX PROD SVX BW4S3
PROD BW4S4 SVX PROD SVX BW4S4
PROD BW5S1 SVX PROD SVX BW5S1
PROD BW6S1 SVX PROD SVX BW6S1
PROD BW7S1 SVX PROD SVX BW7S1
PROD BW7S2 SVX PROD SVX BW7S2
PROD COMM CDF PROD CDF COMM
PROD TEST CDF PROD CDF TEST
L3 TEST TRIG L3 TRIG TEST
L3 PHYSICS TRIG L3 TRIG PHYSICS

The most recent version of this table may be found on the web 1 in the database
browser 2.

1 http://cdfdbb.fnal.gov:8520/cdfr2/databases
2 http://www-cdf.fnal.gov/internal/upgrades/computing/database/browser/browserguide.htm

84

The destinations are:

DESTINATION DESCRIPTION

UNKNOWN Unknown user of this process def
PROD Reconstruction executable
SIM Monte Carlo simulation
L1 Level 1 trigger
L2 Level2 trigger processors
L3 Level3 trigger farm
CRATES Front end crates
TOP Top analyses
BOTTOM B physics analyses
QCD QCD analyses
PAD General post-reconstruction analyses
CONSUMER Online consumers

The systems are:

SYSTEM DESCRIPTION

CTC Central Tracking Chamber (RUN1)
COT Central Outer Tracker
CLC Luminosity Counter
CAL Calorimeter and Shower Max
SMX Shower Max detectors
SVX Silicon detectors
MUON All muon detectors
TOF Time of Flight
TRIG Trigger L1/L2/L3
DAQ Data Acquisition
FWD All forward detectors, BSC, etc.
CDF Composite CDF detector

85

The valid modes are:

CALIB MODE DESCRIPTION

UNDEFINED Unknown conditions of use
RUN1 Run 1 data
TEST Testing
PHYSICS Normal physics running
COMM Fall 2000 commissioning run
BW2S1 Silicon Bandwidth 2 setting
BW3S1 Silicon Bandwidth 3 setting
BW4S1 Silicon Bandwidth 4 setting
BW4S2 Silicon Bandwidth 4 setting
BW4S3 Silicon Bandwidth 4 setting
BW4S4 Silicon Bandwidth 4 setting
BW5S1 Silicon Bandwidth 5 setting
BW6S1 Silicon Bandwidth 6 setting
BW7S1 Silicon Bandwidth 7 setting
BW7S2 Silicon Bandwidth 7 setting
SOURCE Calorimeter source runs
FLASH Calorimeter LED and Xe asher runs

86

For each system, only certain modes are valid. The correspondence is shown here:

SYSTEM CALIB MODE

TRIG UNDEFINED
COMM
TEST
PHYSICS

SVX TEST
BW2S1
BW3S1
BW4S1
BW4S2
BW4S3
BW4S4
BW5S1
BW6S1
BW7S1
BW7S2

MUON TEST
COMM
PHYSICS

CTC RUN1

COT TEST
COMM
PHYSICS

CAL UNDEFINED
TEST
COMM
PHYSICS
SOURCE
FLASH

SMX TEST
PHYSICS
SOURCE

TOF TEST

FWD TEST

CLC TEST

CDF UNDEFINED
TEST
COMM
PHYSICS

87

Appendix G

Calibration Status List

The table below describes the possible calibration status and its meening. The most recent
version of this table may be found on the web 1 in the database browser 2.

DATA STATUS DESCRIPTION

Results contain a complete set
COMPLETE of channels as de�ned in

CALIB PROPERTIES

RAW Results are un�ltered

GOOD Results have bad channels
�ltered out

FILTERED DEPRECATED: use GOOD instead

TIGHT Results had unusually tight
�ltering

RELAXED Results had unusually relaxed
�ltering

BAD Results were labelled bad for
later study

TEST Results from a test run of the
DB software

Results were derived from
DERIVED multiple runs but are not

necessarily COMPLETE

UNDEFINED Results are unknown/unusable

Unusable, results were written
ORPHANED without an entry in

CALIBRUNLISTS

1 http://cdfdbb.fnal.gov:8520/cdfr2/databases
2 http://www-cdf.fnal.gov/internal/upgrades/computing/database/browser/browserguide.htm

88

Appendix H

Advanced Parameters in Module Talk-To's

There are some advanced ways to set parameters in the TCL �le. These advanced methods
include lists H.2,

H.1 ENUM

AbsParmEnum parname(`command-string',this,`enum-string')

The procedure for adding one of these to a module is:

1. Add an AbsParmEnum as a private member of your module in its header:

private:

AbsParmEnum _parname;

2. intialize it in the constructor of your module:

MyModule::MyModule(const char* const name,

const char* const description)

: AppModule(name, description)

, _parname("cutList",this,"LOOSE")

{

It is possible then to choose the ENUM to work o� the integer values or strings
representing the enum tags. In the initializer above, the tag has been chosen. If the
ENUM value was used, it would be initialized (in this case) to the integer \1".

3. In body of the module constructor de�nes the ENUM options:

list< string > enumNames;

enumNames.push_back("LOOSE");

enumNames.push_back("TIGHT");

_parnme.initValidList(enumNames);

4. In the body of the constructor, set the description:

89

_parname.addDescription("Select cuts to use. The syntax of the

command is \n\ cutList set <choice>,

where <choice> is the enum string from

above.");

5. Add the parameter to a menu:

commands()->append(&_processMenu);

6. In using the beginJob(), beginRun() or event(), method, access the values:

if(_parnmame.value()=="LOOSE"){

_applyLooseCuts();

}else

_applyTightCuts();

}

H.2 List of Parameters

Lists of parameters may be accessed as described in this section. The procedure for adding
one of these to a module is:

1. Add an AbsParmList as a private member of your module in its header:

private:

AbsParmList<double> _dList; // (double is merely an example)

2. intialize it in the constructor of your module:

MyModule::MyModule(const char* const name,

const char* const description)

: AppModule(name, description)

, _dList("dList",this,2,5,1.0)

{

This would initialize a list of double dList with an initial size of 2, a maximum size
of 5 and each element initialized to 1.0

3. Optionally set the defaults:

_dList.setDefault(myList);

or

_dList.setDefault();

_dList.addDefault(val1);

_dList.addDefault(...);

_dList.addDefault(valN);

90

4. In the body of the constructor, set the description:

_dList.addDescription("blah");

5. Add the parameter to a menu:

commands()->append(&_dList);

6. In the beginJob() or event() methods access the list with:

for (AbsParmList<double>::ConstIterator i=_dList.begin();

i!=_dList.begin(); ++i;) {

cout << *i << endl; //

91

