UC Davis and CDF Run 2b Upgrade

David E. Pellett

Grad Student Seminar

January 15, 2003

Outline

- *Background:* UC Davis and Run 2a upgrade
- Tevatron luminosity upgrade for Higgs (and other) searches: Run 2b
 - Tevatron is energy frontier
 - Targeted detector upgrades imperative for high mass physics searches
- Run 2b silicon vertex detector (SVX) upgrade
 - General overview and schedule
 - R&D work at UC Davis
 - Major task: "burn-in" and debugging of all the SVX hybrids for Run 2b (over 1000) at UC Davis
 - Description of UC Davis plans, activities, requirements and schedule

Background: UC Davis and Run 2a Upgrade

- ISL and Layer 00 at Fermilab: hybrid burn-in, assembly
- ISL cable interconnect electronic design
- Readout hybrid testing at LBL
- Studies at UC Davis cyclotron
 - SVX3 SEU cross section measurement
 - Radiation damage of silicon strip, readout components

(Arrows point to silicon components)

SVX II: 3 Barrels, 5 Layers

Simulation: Run II CDF Si

Open Inventor based

Alan Sill, Texas Tech University

CDF Run II Silicon

SVX II Ladders

Alan Sill, Texas Tech University

CDF Run II Silicon

SVX3D R/O Chip

- Rad-hard 0.8 um Honeywell CMOS
- Tested to ~ 4 MRad
- Deadtimeless

- Dynamic pedestal subtraction
- Common to all Run II CDF silicon projects

SVX3D R/O Chip

UCD Students on Run IIA Silicon

□ UCD students on Run IIA silicon (ISL and Layer 00):

- Sasha Barioant
- Paul Gomez (UG, post-graduate researcher)
- Chris Hill (graduated, now at UCSB, co-leader of CDF Silicon)
- -Tiffany Wilkes

Right: Chris Hill at work on his thesis

Dave Pellett, UC Davis 2/20/02

Last Collab Meeting ...

• SVX looked like this:

2 barrels in spacetube and working to finish Barrel-3

Last Collab Meeting ...

• ISL looked like this:

D.Glenzinski, Collaboration Meeting

Last Collab Meeting ...

About 2 wks later ...

• SVX looked like this:

About 2 wks later ...

• ISL looked like this:

By November ...

• L00 looked like this:

25-Jan-01

By end November ...

• L00 installed inside SVX:

By end December ...

• SVX/L00 installed inside ISL:

16-January-01: The Move

everything went exactly as planned -

16-January-01: The Installation

The CDF Run2 Silicon Detector was installed inside the COT at around 2200 on 16-Jan-01

25-Jan-01

Current CDF SVX and Run 2b

- CDF now collecting data in Run 2a
- More luminosity needed for high mass searches
- Upgrade accelerator and aim for ≥ 15 fb⁻¹: Run 2B
- CDF modifications needed to handle rate and radiation damage
- UC Davis part of SVX upgrade group from inception
- Plan to install upgrades in 2005

CDF Run 2a SVX inside ISL (System designed for 2 fb^{-1})

CDF Run 2b SVX Upgrade

- Inner SVX2 layers will begin to fail after 4 fb⁻¹
 - Replace sensors with HV single-sided strips
 - New SVX4 readout chip in 0.25 μ m technology
- Must replace SVX as a complete package
 - Minimize accelerator down time
 - Minimize risk of breakage
- Modular design with **staves**
 - Uniform staves simplify construction
 - Maximum use of space inside ISL

Proposed Run 2b SVX in ISL

Stave Design

- Stave extends half the length of the barrel to central bulkhead
- All outer layers use this design (180 staves); inner layer on beam pipe
- UC Davis working with SVX4 readout chips and hybrids

Outer Layer Hybrid

- Run2b SVX has 1080 4-chip hybrids like this one for outer layers
 - Chips will be wire bonded to sensors along top edge
 - Hybrid will connect to bus cable running underneath on stave
 - Hybrid material is BeO with fine-pitch traces to interconnect components
 - Mounted in aluminum box for testing and burn-in

4-Chip Hybrid in Test Module

• Inner layer ("layer 0") has 72 (*Green board is fanout for test connector*) similar 2-chip hybrids

SVX Stave Construction Plan and Schedule

- R&D and prototyping are under way on rapid schedule
- Plan two stave prototype rounds, preproduction before final production
- Each round requires all stave components including hybrids
- UC Davis Task: Hybrids must be operated and monitored for \sim 72 hours ("burn-in") prior to use in stave assembly. Failing hybrids must be debugged. Need 40 hybrids/week during production.

Run 2b SVX Project Critical Path Summary

Task Name	Duration	Start	Finish
Stave Prototype Round 1	126 days	7/15/02	1/21/03
Stave Prototype Round 2	120 days	1/22/03	7/10/03
Stave Preproduction Round	131 days	7/11/03	1/28/04
Stave Production	245 days	1/29/04	1/21/05
Installation	135 days	8/23/04	3/11/05
Final Assembly	50 days	3/14/05	5/20/05

Assumes Run 2a ends 1/1/05, CDF ready to install SVX 3/14/05

SVX R&D at UC Davis

- Have set up Linux test stand for SVX4 chip and hybrid at UC Davis
 - Designed buffer for Linux computer
 - Wrote code for SEU and ⁶⁰Co tests
- Measured SEU cross section at UC Davis cyclotron (63 MeV protons)
 - Based on 4 SEU's observed, $\sigma_{\rm SEU} = 6 \times 10^{-17} \ {\rm cm}^2$
 - Lower than for SVX3 in same beam

 Conclude SEU-resistant chip design successful
Bottom: Analog performance after 11.6 MRad

SVX R&D at UC Davis II

- With LBL, tested SVX4 chips and hybrids with ⁶⁰Co gammas, wrote code for analysis.
- Irradiated prototype sensors to $1.4 \times 10^{14} \text{ n/cm}^2$ (1 MeV-equiv.) at UC Davis MNRC reactor

Sample holder for 1 MeV neutron irradiation

 Expect to continue irradiations of sensor samples for quality control during prototype and production rounds

Peering down into MNRC reactor core

UC Davis Major Task–Hybrid Burn-In: Logistics

- Hybrids fabricated and checked at LBL, sent to UC Davis for burn-in
 - UC Davis will burn in all hybrids required for the upgrade
 - * 1080 4-chip hybrids and 72 2-chip hybrids plus prototypes and spares
 - Burn-in includes performance monitoring and record keeping
 - Monitor supply current, turn off modules which fail
 - UC Davis will diagnose hybrids whch fail, return them to LBL for repair
 - * e.g., chip or other component replacement, wire bond repair, ...
- Hybrids passing tests sent to Fermilab for module and stave assembly

Burn-In Hardware Requirements

- For Run 2a, burn-in done at LBL
 - 40-port burn-in stand connected to SGI computer by CAMAC interface
- Will build on this but need modifications and new hardware due to:
 - 2.5 V power supply for SVX4 (instead of 5 V)
 - Connections are different for the SVX4 hybrids
 - Move to Linux/PCI rather than SGI/CAMAC
- Requires
 - New buffer and interfaces to computer
 - New multiplexed hybrid interconnection boards ("MPX scrambler")
 - New power supply regulator/monitor boards
 - Modified control program (!)
 - Mechanical support and cooling (via fans)

New Burn-In Stand Block Diagram

• Major components: computer, buffer, control and DAQ multiplexer, pattern generator boards, MPX scrambler boards, regulator cards (red means new)

Current Tasks

- Design and lay out new burn-in stand
- Assemble prototype stand based on former LBL system
 - Use as test bed for burn-in software conversion
- Modify hybrid testing software for use with single test stand
- Fabricate burn-in stand
- Prepare to begin operations for preproduction rounds

Tiffany Wilkes and Wajohn Yao prepare to test control and DAQ MPX

UC Davis Schedule and Milestones

- Milestones for burn-in stand
 - January 2003 Burn-in stand design complete
 - April 2003 Burn-in stand complete
- Tasks in 2003
 - Complete burn-in stand
 - Includes software development
 - Pre-production practice
- Task in 2004: Production

-UC Davis making key contributions to CDF Run 2b upgrade